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Abstract—An ideal juggler system which is nonlinear, 

stabilized around equilibrium point using controllers aided by 

artificial neural networks. Two control approaches are used. One 

is based on linear controller and another one is on nonlinear 

controller. Linear controller, controls the linearized plant around 

equilibrium, where as nonlinear controller considers the original 

nonlinear model of the plant. Both linear and nonlinear 

controllers are aided by neural networks. 

Index Terms—Artificial neural networks, nonlinear control, 

stabilization, approximation by neural networks. 

I.  INTRODUCTION 

HE theory of linear systems is well developed and linear 

controllers for linear systems are studied at vast. But in 

case of nonlinear plants the controllers are mostly plant 

specific. There are no general methods which can be applied 

to all class of systems. Neural networks are one such 

alternative for the control of nonlinear plants. In this work the 

nonlinear plant considered is ideal juggler. It will be stabilised 

around equilibrium point using neural controllers. For 

stabilizing the ideal juggler two controllers were developed 

and simulated. In the first approach nonlinear plant is 

linearised around the equilibrium and a linear controller is 

applied. In the second approach a neural network is made to 

approximate nonlinear control law of the plant and used as a 

controller. 

II. CONTROL PROBLEM OF IDEAL JUGGLER 

In this example we consider the task of juggling a ball using 

a flat board. We make the simplifying assumption that the ball 

moves in a two dimensional plane. We also assume that there 

are no losses in the system, that the ball follows a perfect 

ballistic curve while in the air, and that the collision with the 

board is elastic and always at the same height. The states of 

the system are given by the angle of the ball (ψ) and its 

horizontal location ( ρ ) just before impact. The direction of 

the ball is controlled by setting the angle of the board (α ), as 

the control input. 

                                               
Fig.1 Shows the ideal juggler block diagram 

                                                                                               

The state space equations of the system are:  
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k     count of impacts. 

ρ  horizontal location of impact. 

φ  angle at time of impact(with respect to vertical). 

α  angle of board(with respect to horizontal), the control 

input. 

E,m  enrgy, mass of the ball. 

 

The origin (ρ=0, ψ =0), ball bounced vertically at center of 

board is an equilibrium state. 

 

III. STABILIZATION OF JUGGLER 

Consider  the discrete  time  dynamical  system  described as 

x(k  + 1)  =  f[x(k),  u(k)] 

y(k) = h[x(k)]     

T 
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The  problem  of  controlling  a  plant,  can  be  conveniently 

divided  into  the  regulation  and  tracking  problems.  In  the 

former,  the main  objective  is  to  stabilize  the  plant  around   

 

a fixed  operating  point.  In  the  latter,  the  aim  is  to  make  

the output  of  the  plant  follow  a  specified  signal  

asymptotically. While  our  ultimate  goal  is  to  determine  

the  control  input  U based  only  on  output  measurements  

for  both  regulation and tracking, we will  confine our 

attention  in  this work to  the  problem  of  regulation  when  

the  state of  the  system  is accessible. This implies  that our  

interest  is only  in  the  system described  by  the  first part  of  

(1),  i.e., In the present work we discuss the stabilization of the 

nonlinear system represented by (1)  around an equilibrium 

state. 

                 Σ :  x(k+1) = f ( x(k), u(k) )  

The stabilization is done by two methods 

(i) linear controller 

(ii) nonlinear controller 

The design of linear controller is based on the linearization of 

nonlinear system around the equilibrium point around which 

stabilization has to be done. After that a direct nonlinear 

controller is designed which produces control input to the 

plant based on the state feedback. Here the relation between 

state feedback and control input is nonlinear. The role of 

neural network in control is approximating plant and 

controller behaviour. The details of implementing linear and 

nonlinear controllers using neural network are discussed in 

following chapters.  

 

A.  Stabilization  of  Juggler using Linear Controller 

Linearization of Nonlinear plant 

A nonlinear system represented by equ (2) can be linearized 

around any equilibrium point (usually origin). The lineralized 

equation is given by 

    ΣL :  δx(k+1) = Aδx(k)  +  bδu(k)  

   where A = fx|0,0  and  b = fu|0,0 which are simply jacobians of 

f wrt to x and u 

 

The lineralized equation of ideal juggler at the origin is 

4 8
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 The controllability matrix MC is given by 

8 16

|

2 2

C

E E

mg mgM b Ab     

Since Mc is full of rank, the system can be locally controlled 

from any initial  point 

(ρi, ψi) to any other point in at most two steps.  

The simplest scheme for stabilization is by the use of a linear 

controller. Let  ΣL be a linearization of (2) around an 

equilibrium point x= 0. If  ΣL is controllable, then linear 

theory tells us that there exists a linear feedback law  u=K
T
x  

that stabilizes ΣL around the origin. Since ΣL is the first order 

approximation of the original nonlinear system, one might 

expect that the same linear feedback law will locally make the 

origin an asymptotically stable point of (2) 

 

Implementation of Linear Controller using Neural Network 

 Given the state space model of the nonlinear plant, the plant is 

approximated using feedforward neural network NNf (.) . The 

A, b matrices of the liberalized plant are just the Jacobians of 

NNf (.) with respect to the states and the inputs. Once these are 

calculated, with a linear feedback law u = K
T
x  , the linearized 

system is given by 

 

δx(k+1)  = Aδx(k)  +  bK
T
 δu(kv) 

 =(A+bK
T
)δx(k) 

and it will be asymptotically stable if the eigen values of 

A+bK
T
  lie inside the unit circle of the complex plane. With a 

feedback law chosen in this manner, the above theorem 

assures that the nonlinear system will also be locally 

asymptotically stable. 

 

Though the linear controller will stabilize the nonlinear system 

around the origin, the range over which the system will be 

stable depends upon the system and may be small for 

nonlinear systems. Thus one hopes that by employing an 

appropriate nonlinear controller, the range over which the 

system is stabilized can be increased. The following sections 

address the issue of nonlinear controllers, and the linear 

controller is used as a benchmark for the evaluation of the 

performance of more sophisticated controllers. 

 

 

B. Stabilization of Juggler by Nonlinear Feedback 

Concept of Nonlinear State Feedback Controller 

Let ∑ be the nonlinear dynamical system (2) and ΣL it’s 

linearization around the origin. If the linearized system is 

controllable then there exists a neighborhood Vx c X around 

the origin and a continuous feedback law u(k) = g[x(k)] that 

will make V n-step stable. 

 

Now, assume the system was started at x(0) = x1. Since x1,  

the sequence of inputs u( k)= g k(x1) will drive it to the 

origin in n steps. On the other hand, the original input 

sequence u( k)= gk+l(xo) will drive it to the origin in n - 1 
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steps. The origin, however, is an equilibrium state (with zero 

input the system will remain at the origin). Thus the input 

sequence (gl(xo),g 2(xo),. . .gn-l(xO),0 ) will also 

drive x1 to the origin in n steps. But for any x the input 

sequence that drives it to the origin in n steps is unique and 

thus we get that go(x1) must be equal to gl(x0). 

The same reasoning, applied to each of the xi, will lead to 

go(xi) = gi(xo). Hence, for any x E Vx, the system 

               x(k + 1) = f[x,go(x)] 

will converge to the origin in at most n steps. The equivalent 

result for a linear systems x(k + 1) = Ax(k) + bu(k) is that 

using state feedback  the u=K
T
x  is combined matrix   = A + 

bk
T
 is made nilpotent. For a two-dimensional canonical  

system 

                                     

1 2

1 0 0
( 1) ( ) ( )

1
x k x k u k

a a
 

Choosing 
1 2

Tk a a  the state feedback becomes 

1 1 2 2( ) ( ) ( )u k a x k a x k  and that will bring the system 

to the origin in at most two steps. A controller that stabilizes a 

system around a point in finite time is called a dead beat 

controller. 

 

Again the juggler’s equations are given by  

2
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From above theorem it follows that the system can be 

stabilized around the origin using a nonlinear feedback 

control. In fact, this will be accomplished by the control law. 

11
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Implementing Nonlinear Controller using Neural Network 

 

In this implementation the nonlinear feedback law  u=g(x) is 

also approximated by neural network NNg. Hence nonlinear 

controller requires two neural networks , one approximating 

plant and the another one which approximates nonlinear 

control law. For the above said method to be applied, the rank 

condition needs to be checked. This is done by determining 

the Jacobian of NNf  with respect to the inputs at the 

equilibrium point. Let Â and be defined as 

 

  
,

ˆ | 0,0 '
fNN x u

A
x

   
,

ˆ | 0,0
fNN x u

b
u

  (3) 

Using the matrices A and b, the rank of the model’s 

controllability matrix Mc, is checked. 

Let Mc be of full rank. Let S denote the region of interest in 

which we wish to stabilize the system. Our goal is to train a 

neural network NNg , as a controller of (2) that will make S 
finitely stable with respect to the origin. The results developed 

earlier establish that there exists a control law u = g(x) for 

which the following is true. (i) There exists an open set V 

containing the origin such that for all w V, F(z) = 0.(ii) 

There exists a larger open set W 2 V such that for all x E W, 

F(z) is a contraction mapping. 

Based on these results, the performance of a controller can be 

evaluated only in intervals of n steps. We assume that a 

control law can be determined so that W covers S. Though our 

ultimate goal is to stabilize the actual system, the training of 

the controller is done using the model, and thus we can 

assume arbitrary initial conditions. The latter are selected  

using a random uniform distribution over S. Let 

                         
, ( ) , ( )f g f gNN x NN x N x            (4)         

Once an initial point xo is chosen, 
, 0( )n

n f gx NN x   is 

calculated by running the controlled model n steps. Since it is 

only for x E V (which is unknown) that the system can be 

brought to zero in n steps, the training error for the controller 

must be chosen as follows  

                                               

IV. RESULTS 

The proposed control algorithms were simulated using 

MATLAB software. The figures 2,3,4 show the stabilization 

of states when linear controller is used and the figures 5,6,7 

show the stabilization of states of ideal juggler towards origin 

for both the cases All the states were stabilized at equilibrium 

which is origin. The initial state is chosen at random near the 

origin 
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   Fig.2 shows the stabilization of states when linear controller(k vs ρ ). 

 

 
   Fig.3 shows the stabilization of states when linear controller(k vs φ). 

 

    Fig 4 shows the stabilization of states when linear controller(k vs α). 

 

 

Fig.5 shows the stabilization of states of ideal juggler towards origin (k vs ρ ). 

  

Fig.6 shows the stabilization of states of ideal juggler towards origin (k vs φ ). 

 

 

 Fig.7 shows the stabilization of states of ideal juggler towards origin (k vs α). 

V.CONCLUSION 

The nonlinear system can be controlled with the aid  of  neural 

networks directly and indirectly by linearising the nonlinear 

point around equilibrium point. The universal approximation 

capability of neural networks can be used in aiding the 

controllers 
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