
Design of Built-in Self-Test Core for SRAM

Reeja J.

 PG Scholar, VLSI & Embedded Systems, ECE

Department

 TKM Institute of Technology

 Karuvelil P.O, Kollam, Kerala-691505, India

Anusree L. S.

Assistant professor, ECE Department

TKM Institute of Technology

Karuvelil P.O, Kollam, Kerala-691505, India

Abstract—Nowadays, usage of embedded memories is more than

half of the die area for a typical SoC. Due to the complexity of

memory architectures, the possibility of occurring manufacturing

defects is more. Hence, memory testing is a very challenging task.

Built-in self-test (BIST) has been proven to be one of the most

cost-effective and widely used solutions for memory testing. It is

used to confirm that each location in a memory device is working.

In this project, a BIST core for testing SRAM using March C-

algorithm has been proposed. The BIST core has been designed

to test 8 bit SRAM using March C- test patterns. The generated

test patterns to be applied to each memory address and the test

response can be evaluated by an output response comparator.

Different fault models can be detected by Bit-Oriented and

Word-Oriented March C- algorithms. The main advantage of

March C- algorithm is high fault coverage and linearity of the

test time with memory size. The design architecture can be

written using VHDL code and simulated using Xilinx ISE tools

and ModelSim.

Keywords— BIST, March Test Algorithm, Memory fault models

I. INTRODUCTION

As process technologies continue to shrink and memory

size and design complexity grow, it has become increasingly

difficult to achieve high manufacturing yield. Embedded

memories are the most dense components within a system-on-

chip (SoC), accounting for more than 50 percent of the chip

area. Implemented using aggressive design rules, embedded

memories tend to be more prone to manufacturing defects and

field reliability problems than any other core on the chip.
Applications that require lots of memory are served by designs

that embed large numbers of memory bits per chip, creating

more powerful SoCs, but this has the associated problems of

increased die size and poor yield. As design applications

require more memory, it is essential to implement a

comprehensive embedded memory test help to achieve high

yield. BIST is considered as one of the most promising

solution for memory testing. The basic idea of BIST, in its

most simple form, is to design a circuit so that the circuit can

test itself and determine whether it is ―good‖ or ―bad‖ (fault-

free or faulty, respectively). This typically requires that

additional circuitry and functionality be incorporated into the

design of the circuit to facilitate the self-testing feature. This

additional functionality must be capable of generating test

patterns as well as providing a mechanism to determine if the

output responses of the circuit under test (CUT) to the test

patterns correspond to that of a fault-free circuit. The main

feature of the BIST is the capability to test deeply the memory

through an in- built algorithm. Basically the testing algorithms

can be divided into two types: Traditional test algorithms and

March based test algorithms. Traditional test are

checkerboard, GALPAT, Walking 1/0, butterfly and etc.

March algorithms are preferred over Traditional testing

algorithms because March algorithms are highly linear, simple

and good fault coverage. Among March test algorithms, the

March algorithm is practical to offer the highest fault

coverage. So March C- algorithm is considered here for the

design of BIST for SRAM.

The report is organized as follows. Chapter 2 includes the

literature survey of the project. It gives the basic idea of

Memory BIST , SRAM memory fault models and March C-

algorithm. Chapter 3 presents the design of Bit-Oriented

March C- algorithm and the architecture of March C-

Memory BIST for 8-bit SRAM. The simulation results are

given in the Chapter 4. It includes the simulation result

obtained from ModelSim and finally Chapter 5 concludes this

project and outlines the further researches followed by the

references.

II. LITERATURE REVIEW

A. Built-In Self-Test

Built-in Self Test, or BIST, is the technique of

designing additional hardware and software

features into integrated circuits to allow them to perform self-

testing, thereby reducing dependence on an external

automated test equipment (ATE). The general BIST

architecture is shown in Fig 1.1.

The general BIST architecture consists of mainly four

blocks. They are,

1. BIST test controller, which controls the BIST circuit.

2. Test generator, which controls the test address sequence.

3. Response verification as a comparator, which compares the

memory output response with the expected correct data.

4. Circuit Under Test

A more recent method of memory testing is to

include the tester function right in the silicon by placing an

address generator, data generator and algorithmic sequencer

into the silicon design.

410

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030468

Fig.1.General BIST Architecture

The Memory BIST approach is commonly used because it

provides efficient, less costly and speed testing solution for

memory. The memory BIST provides several advantages such

as high fault coverage, high speed testing, low area and low

cost than other testing methods. The FSM based memory

BIST having advantage of speed testing, small area and

compact but less flexibility.

B. Memory Fault Models

In general, there are four memory fault models:

i) Stuck At Faults

ii) Transition Faults

iii) Address Decoder Faults

iv) Coupling Faults

 i) Stuck At Faults Model (SAF)

A stuck at fault implies that a write operation is unable

either a 0 - 1 or a 1 – 0 transition in the memory cell where the

fault exists. It indicates that a cell is locked in one state or

another. A single cell which is defect free can be written to

either state and when read retains the information that was

originally in the cell. There are two main types are stuck at 1

or stuck at 0. For example stuck at 0 in a memory; no matter

what happens in the cell, whether it is read or written,

regardless of intended data value, the cell stays at a "0".

 ii) Transition Faults Model (TF)

The transition fault is memory cell will retain either state.

However once it is written to one state it cannot transition

back. Thus, when the memory is powered up the cell may be

in either a "0" or a "1" state. It can only written in one

direction where it is possible to transition this cell from a "0"

state to a "1" state but it cannot transition back. Transition

faults are two types: Up Transition Fault and Down Transition

Fault.

 iii) Address Decoder Faults (AFs)

Address decoder faults (AFs) are faults in the address

decoder. There are four types of address decoder faults.

1) With a certain address, no cell will be accessed.

2) A certain cell will not be accessible.

3) With a certain address, multiple cells are accessed

simultaneously.

4) A certain cell can be accessed with multiple address.

 iv) Coupling Fault Model (CF)

Coupling fault occurred because of the regularity of

its structure, a memory chip may experience a change in one

cell due to an intended change in another cell. The coupling is

due to shorts or parasitic effects such as stray capacitance.

There are two CF types: Inversion and Idempotent coupling

Fault.

a) Inversion Coupling Faults (CFin)

The coupling between two adjacent cells "i" and "j";

the faults sensitized by transition write operation (write 0 - 1

or 1 - 0) to cell "j". Cell "j" is called the coupling cell and

inverts the contents of cell "i" which is known as the coupled

cell. For example: transition write operation 0 - 1 to cell "j"

causes a 1 - 0 inversion coupling fault in cell "i".

b) Idempotent Coupling Faults (CFid)

An idempotent coupling fault (CFid) is where an

increse (↑) or decrease (↓) transition in cell sets cell to 0 or 1.

This is denoted as <↑; 0> or <↑; 1> depending on whether cell

i is set to 0 or 1, for a rising transition for cell j. The other two

idempotent coupling faults are <↓; 0> and <↓; 1>.These faults

also involve coupling between two adjacent cells "i" and "j",

and are sensitized by a transition write operation. The

difference between inversion and idempotent is that the

transitions write operation to cell "j" forces the contents of cell

"i" to a fixed value which is not necessarily the inverse of the

value written to cell "j".

C. March Test Algorithm

March test algorithm is a finite sequence of March

elements. March element is specified by an address order and

number of read/write operations. This section discusses March

tests that are of O(N) complexity. March tests are named so,

because starting with the first memory location a 1 (or a 0) is

written while locations previous to that keep their written 1 (or

0) values. So it appears like 1s (or 0s) are marching in from

location 0 to the last location in the memory. For ease of

explanation of March tests, a notation has been devised by

Van De Goor [9] a subset of which is shown in Table 2.1. This

notation unambiguously specifies the testing procedure, and

the number of reads and writes are easily seen that determine

the order of a test procedure.

There are a few of test algorithms for SRAM testing that

are rather simple for BIST implementations include variations

of the Modified Algorithmic Test Sequence (MATS) and

411

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030468

March tests including the March Y algorithm that used for the

FSM based Test Pattern Generation. Some of the March based

tests are MATS, MATS+, MATS++ March X, March Y, and

March C-.For highest fault coverage, March C- algorithm is

used as the memory test algorithm.
The March C- algorithm is shown in below.

March C- :{↕(w0);↑ (r0,w1);↑(r1,w0);↓ (r0,w1);↓ (r1,w0); ↕

(r0)}.

Steps in March C- Test:

1. Write 0s to all cells in any order (M0: ↕ (w0)).

2. Read from the lowest address (expected read value is 0),

write a 1 at this address and repeat until the highest address is

reached (M1: ↑ (r0, w1)).

3. Read from the lowest address (expected read value is 1),

write a 0 at this address and repeat until the highest address is

reached (M2: ↑ (r1, w0)).

4. Read from the highest address (expected read value is 0),

write a 1 at this address, and repeat until the lowest address is

reached (M3: ↓ (r0, w1)).

5. Read from the highest address (expected read value is 1),

write a 0 at this address, and repeat until the lowest address is

reached (M4: ↓ (r1, w0)).

6. Read from all cells in any order (expected read value is 0)

(M5: ↕ (r0)).

In Fig.2., the State diagram of March C- algorithm,

first state denotes initial state, intermediate states (M0, M1,

M2, M3, M4, M5) denotes March elements of March C-

algorithm and last state denotes final state.

Fig.2. State diagram for first two operations of March C -algorithm

III. PROPOSED METHOD

A. System architecture

 FSM based Bit-Oriented Memory Test algorithm is

designed in this project. Memory test algorithms are used to

confirm that each location in a memory device is working.

This involves writing a set of data to each memory address

and verifying this data by reading it back. If all the values read

back are the same as those that were written, then the memory

is fault free, otherwise faulty. For highest fault coverage,

March C- algorithm is used as the memory test algorithm [4].

Fig.3. Block Diagram of Bit Oriented March C- Algorithm

The test begins starting with the Test controller that

gives input to the SRAM. An FSM works on the Test

controller which starts from the first March element M0 to

March element M5. Increment / Decrement operation is done

by the up-down counter. When up signal is high, it starts to

count from lower order address to higher order address. When

up signal is low, it starts to count from higher order address to

lower order address. Counter output is given to the read/write

address of SRAM. After completion of performing all March

element of March C- algorithm, the Test controller block

makes the output signal (done) high.

Fig.4. shows the MBIST architecture. The memory to

be tested is shown in gray, and solid line blocks show the test

circuitry. Test data that are to be applied are generated by this

MBIST circuitry and applied to the memory. As data are being

read from the memory, they are compared with the

reproduction of the same data that was written into specific

memory locations. After writing and reading all locations,

expect all data read from the memory to be the same as those

that were written into it. Counter-sequencer handles the ten

phases of March C- test. Here, memory that is to be tested ,

has a word-length of eight bits.

 i) March C- BIST Counter-sequencer

It is a 13 bit counter, which provides address,

direction of address generation (from highest to lowest or visa

versa), test data, and switching between reading and writing

the memory. The six least significant bits of the counter-

sequencer provide addressing for all locations of the memory.

The next four bits to the left of the address group of bits

specify the ten consecutive read/write operations of March C-.

Also these four bits along with the three most significant bits

of the counter-sequencer are decoded to generate the

appropriate test vectors for testing the memory words.

According to March C- algorithm, in Steps 1 and 6, the

address increments (or decrements) and, for the specific

address, only read or write operation will take place. In all

other steps, both read and write operations must be done

before going to the next address. To implement this, when the

412

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030468

counter-sequencer is in Steps 1 or 6, it behaves normally and

increments or decrements by 1 with every clock cycle. In all

other steps, the address of memory (the six least significant

bits (cnt_ reg[5:0]) do not change for two consecutive cycles,

but cnt_reg[9:6] increments and then decrements by 1.

Fig.4. March C- MemoryBIST Architecture

 ii) Decoder

The test data decoder uses a 7-bit input vector to generate

memory test patterns and the value that is to be compared with

the value read from the memory. For every bit of each

memory word, all six steps of March C- algorithm (that

contains ten operations) are exercised. So using the three most

significant input bits, the bit within the word that the above ten

operations must be performed on is specified. The decoder

specifies which test value must be written into the memory

word.

 iii) BIST controller

It starts the counter when it receives the start signal. and

waits for the carry-out (cout) to become 1.

 iv) Multiplexers

The multiplexers of the BIST architecture select between

normal memory inputs and BIST provided inputs. When

NbarT is ―0,‖ the memory is working in the normal mode and

when this input becomes ―1‖ it operates in test mode.

 v) Comparator

Initially, the same test pattern is written into all memory

locations, and then these data are read out from all locations.

As data are being written and read, the decoder input and thus

test patterns remain unchanged. A comparator checks memory

data with decoder output. When memory is being tested and

data are being read, the comparator should have same data on

both its inputs.

IV. SIMULATION RESULTS

The design entry is modeled using VHDL in Xilinx

ISE Design Suite 13.2 and the simulation of the design is

performed using ModelSim from Xilinx ISE to validate the

functionality of the design. Here design of Bit-Oriented

memory test algorithm is simulated.

Fig.5.Simulation result of March element M0

March element M0 (phase1) indicates writing data 0

to all memory locations from rwaddress =1111 to rwaddress =

0000 by forcing the signal values ud=0. Here, ele1 indicate

this write 0 operation when we=1 and oe=0.

Fig.6.Simulation result of March element M1

March element M1 (phase2) indicates reading data 0

and writing data1 to all memory locations from

rwaddress=0000 to rwaddress =1111 by forcing the signal

ud=1. Here, ele1 indicates read 0 operation when we=0 and

oe=1 and ele2 indicates write 1 operation when we=1 and

oe=0.

Similarly, March elements M2, M3, M4, M5 are obtained.

Fig.6.Simulation result of Bit-Oriented March C- algorithm

413

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030468

After the successful completion of all March elements,

done signal goes to high .Then it ensures that there is no fault

in the memory.

V. CONCLUSIONS

As the weight of embedded memory in aggressive

System-on-Chips (SoCs) gradually increases, the importance

of testing embedded memory in SoC increases. The most

prevalent method of testing embedded memory is Built-in

Self-test (BIST). BIST is the best solution for testing

embedded memories within SOCs. It offers a simple and low

cost means without significantly impacting performance. A

built-in self-test for 8 bit SRAM using March C- algorithm is

designed in this project. March C- algorithm uses March C-

patterns which identify a huge number of real defects seen in

manufacturing test. It can cover host faults including stuck-at

faults, transition faults, and many coupling faults and address

decoder faults. The project is designed using VHDL and

simulated using ModelSim 6.2b design suite from Mentor

Graphics.

REFERENCES

[1] M.S.Prasanthi, M.rangaswamy, M.E.dinakar ―Restartable BIST
controller for fault detection in CLB of FPGA”, International Journal

of Emerging Trends in Engineering and Development, Issue 3, Vol.5

September 2013.
[2] M.H. Husin, S.Y. Leong, M.F.M. Sabri, R. Nordiana ―Built in self

test forRAM Using VHDL‖ 2012 IEEE Colloquium on Humanities,

Science & Engineering Research (CHUSER 2012), December
3-4, 2012.

 [3] M.I.Masnita, W.H.W.Zuha,R.M.Sidek,an A.H.Izhal, ―March-

based SRAM diagnostic algorithm for distinguishing Stuck-At and
transition faults‖ ,IEICE Electronics Express,Vol.6,No.15,1091-

1097,Aug 2009.

[4] Stroud ,Charles E., ― A Designer’s Guide To Built- in Self-
test‖,Springer,p.61,2004.

[5] A. van de Goor and I. Tlili, ―March Tests for Word-Oriented

Memories,‖ Proc. Design Automation and Test in Europe, 1998, pp.
501-508. Feb.2001.

[6] M. L. Bushnell and V. D. Agrawal, ― Essentials of Electronic Testing

for Digital, Memory and Mixed-Signal VLSI Circuits‖, Boston:
Springer, 2000.

[7] Mirron Abramovici, Melvin Breuer and Arthur Friedman, ― Digital

Systems Testing And Testable Design ‖ ,Piscataway,New Jersy,
IEEE press,1994.

414

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030468

