

Design of Controller Area Network for Sensor

Network Application using Verilog-HDL

Rugved D. Katyarmal

PG Student, Electronics Engineering Department,

G. H. Raisoni College Of Engineering, Nagpur

Prof. P. Daigavane

Professor, Electrical Engineering Department,

G.

H.

Raisoni College Of Engineering, Nagpur

Abstract— Communication modules are required for sensors

interface with the sensor network. CAN provide a high

decreasing in wiring complexity and, additionally, make it easy

to connect with several devices using a single pair of wires,

allowing the data exchange between them at the same time. This

paper first studies the Controller Area Network (CAN) protocol.

The CAN controller has been designed in Verilog. The design is

implemented on FPGA. The designed CAN controller is

interfaced with a LM35 temperature sensor.

I. INTRODUCTION

 Controller Area Network (CAN) is a broadcast and

differential serial bus standard which was originally

developed for automotive applications[1]. This protocol

efficiently supports distributed real-time control with a very

high level of security. Currently, CAN is also used in other

applications, such as: home systems, medical devices,

industrial control, etc. The interest in CAN is increasing

rapidly due to the different applications that are foreseen and

the availability of devices integrating CAN in the market.

Moreover, a higher demand could be addressed with the new

emerging technologies related to totally networked

environments in factories, at home, etc. where control

network protocols will be required, rather than data networks.

CAN has the following properties: prioritization of messages;

guarantee of latency times; configuration flexibility; multicast

reception with time synchronization; system wide data

consistency; multi-master; error detection and signaling;

automatic retransmission of corrupted messages as soon as the

bus is idle again; distinction between temporary errors and

permanent failures of nodes and autonomous switching off of

defective nodes [2]. Such characteristics are very attractive to

make CAN a suitable communication protocol for sensors

networks wired and wireless.

Microcontrollers with integrated CAN interface suffer a

performance penalty, as the microcontroller is responsible for

message transmission and reception, besides reading inputs

and driving outputs. This is a critical factor in industrial

networks, where latency is an issue. If a standalone CAN

controller is used, there is a cost penalty as an extra IC is

required, increasing the cost of the system. Finally, IP cores

developed by FPGA manufacturers and independent designers

are generally not free. All these factors evidence the necessity

of development of a CAN module for smart sensors. Using

the ISO/OSI reference model, the CAN protocol is subdivided

into different layers: the Data Link Layer (DLL) and the

Physical Layer. The DLL is subdivided into two sub layers:

the Logical Link Control (LLC) sub layer and the Medium

Access Control (MAC) sub layer [2].

The paper is divided into five sections. This introduction is

the first, next Controller Area Network (CAN) is described

along with its message frame format. In the third section

design methodology for designing the Controller Area

Network using Verilog-HDL is described. The forth section

goes through the simulation results followed by the final

section conclusion and references.

186

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040585

THE CAN CONTROLLER

CAN networks have several features that make them well

suited for control applications. Among these features, the

main ones are the following:

 Serial bus communication for real time applications

 Multi-master node hierarchy, in a way that if a node

fails the whole system does not collapse

 Typical network size could be between 32 to 64

nodes, running up to 100.

 Cost-efficient both in design and implementation.

 NRZ (Non-Return to Zero) coding with bit stuffing.

 To determine the priority of messages a CSMAICD

mechanism is used (Carrier Sense telegram sections

(start of frame, arbitration field, Multiple Access

with Collision Detect)

 Message name (identifier) designates the information,

but not the address of the node.

Fig.1 shows the format of data message frames for the CAN

protocol. The message frames can have different lengths,

depending on the type of identifier used (1 I-bit for CAN2.OA

or 29-bit for CANZ.OB), and on the length of the transmitted

received data, specified in the DLC field [2]. The number of

data bytes in a transmission may vary from 0 to 8 bytes.

Another important advantage of CAN is the large number of

available components in the market, normally integrated as a

peripheral port of a standard microcontroller. However, there

is also a need of having such a peripheral block in an ASIC

(Application Specific Integrated Circuit) or a FPGA (Field

Programmable Gate Array)

II.A BIT TIMING LOGIC (BTL)

The bit timing logic monitors the serial CAN-bus line. It is

synchronized to the bit stream on the CAN-bus on a

„recessive-to-dominant‟ bus line transition at the beginning of

a message (hard synchronization) and re-synchronized on

further transitions during the reception of a message (soft

synchronization). It also provides programmable time

segments and phase shifts (e.g. due to oscillator drifts) and to

define the sample point and the number of samples to be

taken within a bit time
[3]

.

 Synchronization Segment (Sync_Seg): This part of

the bit time is used to synchronize the various nodes

on the bus.

 Propagation Time Segment (Prop_Seg): It is used

to compensate the physical delay times within the

network.

 Phase Buffer Segment1 (Phase_Seg1) and Phase

buffer segment2 (Phase_Seg2): These segments are

used to compensate for edge phase errors.

Fig. 2. CAN bit timing

SOF

:

Start Of Frame

RTR :

Remote Transmission Request (1 bit)

r0, rl :

two dominant bits

DLC :

Data Length Code (4 bits)

CRC

:

Cyclic Redundancy Code (15 bits)

 ACK :

Acknowledge (2 bits)

EOF :

End Of Frame (7 recessive bits)

 INT :

Intermission period (3 bits)

Fig. 1.

CAN message format

187

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040585

Ii.B Transmit And Receive Buffer

The transmit buffer is an interface between the CPU and the

Bit Stream Processor (BSP) that is able to store a complete

message for transmission over the CAN network[3]. The

buffer is ten bytes long, written to by the CPU and read out by

the BSP.

The receive buffer is an interface between the acceptance

filter and the CPU that stores the received and accepted

messages from the CAN-bus line. The Receive Buffer

represents a CPU-accessible ten-byte window. There are two

ten bytes receive buffer. With the help of this the CPU is able

to process one message while other messages are being

received[3].

II.C Cyclic Redundancy Code Generator

Each message is provided with a 15-bit-long CRC code. This

code is generated from the various fields from the frame

format. When receiving a message frame, the code is

generated analogously from the received data and compared

with the CRC field in the message. This implies an error

protection for the messages through the network[2].

Ii.D Acceptance Filter

The acceptance filter compares the received identifier with the

acceptance filter register contents and decides whether this

message should be accepted or not. In the event of a positive

acceptance test, the complete message is stored in the receive

buffer.

II. DESIGN METHODOLOGY

 Fig. 3. Block diagram of CAN controller

• Parameter Registers: The code parameter, mask parameter

and the Re-Synchronous Jump Width (SJW) specified for the

CAN node are stored in this register.

• Transmit Buffers: There are ten transmit buffers, each of

which can hold one byte of data. The controller then receives

the data to be transmitted from the host CPU and stores the

message in the buffer before further processing takes place.

• Data / Remote Frame Generator: Data / Remote Frame

Generator is responsible for generating the message frame as

specified by the CAN protocol.

• Par-Ser Converter: This unit serializes the message to

facilitate the CRC computation.

• Transmit CRC Generator: Before transmission, this unit

computes the CRC for the message to be transmitted. The

generated CRC frame is appended to the message being

transmitted before bit-stuffing is performed.

• Bit Stuff Unit: This unit performs bit-stuffing as specified

by the CAN protocol, making the message suitable for

transmission across the CAN network.

• Overload / Error Frame Generator: Generates Error or

Overload frame whenever error or overload condition occurs.

Error containment measures are also taken care of to ensure

the accuracy of the controller‟s performance and its further

participation in the CAN network.

• Serialized Frame Transmitter: This unit transmits the data/

remote frame or the error / overload frame or a dominant bit

during the acknowledgment slot based on the prevalent

conditions.

• Message Processor: This is the central unit which provides

all the control and the status signals to the various other

blocks in the controller. This unit routes the different signals

generated in various blocks to the necessary target blocks.

• Error Management Logic: The error management logic

consists of form checker, crc checker, acknowledgement

checker etc. A form error is generated if any of the fixed-form

fields in a received CAN message is violated. The fixed form

fields include the CRC delimiter, ACK delimiter and the EOF

field. During the transmission of the acknowledgement slot a

transmitter transmits a recessive bit and expects to receive a

dominant bit. If the node receives a recessive bit in the

acknowledgement slot an ACK error is signaled.

• Bit De-stuffing unit: This unit performs the de-stuffing of

the messages received from the CAN network. This unit also

extracts the relevant information from the received message.

The CAN bus bit stream is sampled by the Synchronizer of

the CAN controller. This sampled bit stream is then de-stuffed

before the relevant information is extracted from the received

message. Due to the bit stuffing process of the CAN protocol

a stuff bit of opposite polarity follows a sequence of 5

consecutive bits of the same polarity. The function of the de-

stuffing unit is to remove the stuffed bits from the received

message.

III. SIMULATION RESULTS

Fig. 4. Load Parameters

188

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040585

Fig. 5. Load Message

Fig. 6. Data Remote Frame Generation

Fig. 7. Bit Stuffing Mechanism

Fig. 8. Bit De-stuffing

Fig. 9. Successful Reception

Fig. 10. Implementation and Interfacing of Controller Area Network with

Temperature Sensor on FPGA

IV. CONCLUSION

The design of a CAN controller has been reported in this

paper. The various simulation results of CAN controller are

been reported. The designed CAN controller has been

implemented on an FPGA and interfaced with a LM35

temperature sensor and the results are shown.

VI. REFERENCE

1. “CAN in Automation e. V. CiA 301 V4.2.0 - CANopen application layer
and communication profile, Feb. 2011.

2. “Design of a CAN interface for custom circuits” J. de Lucas, M. Quintana,

T. Riesgo, Y. Torroja, J. Uceda. - IEEE Industrial Electronics Society
3. CAN Specification Version 2.0, Robert Bosch GmbH, Stuttgart, Germany.

4. “A VHDL CAN MODULE FOR SMART SENSORS”, Jose E. 0. Reges,

Edval J P. Santos, Laboratory for Devices and Nanostructures, Recife,
PE, Brasil, 4th Southern Conference on Programmable Logic 2008

5. “The application of controller area network on vehicle” Wang Xing,

Huiyan Chen, Huarong Ding – IVEC International Vehicle Electronics
Conference.

6. “Research On CAN controller conformance test system” Feng Luo, Jie

Chen ICCSIT 2009. 2nd IEEE International Conference on Computer

Science and Information Technology.

7. “A modular Controller Area Network vision system using programmable

interface controller” Mohd Sharil b. Salleh, Herdawatie bt.Abd. Kadir,
and Mohd Helmy bin Abd Wahab - ICED 2008. International

Conference on Electronic Design

8. "Introduction to the Controller Area Network (CAN)“ S. Corrigan, Texas
Instrument, Application Report, July 2008”.

189

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040585

