

Design Of Delay-Efficient Configurable Booth Multiplier For High Speed

Applications

 Shabeer Ahmad Ganiee Sajad Ahmad Ganiee Dr. Faroze Ahmad

 Assistant Professor, ECE M.Tech (Electronic Circuit and System) HOD, Electronics & Communication

 IUST, Awantipora, J&K IUST, Awantipora, J&K

Abstract— Multipliers, play an important role in the design of

microprocessor, graphical systems, multimedia systems, DSP

system etc .Nearly 15 percent of total IC power is consumed by

multiplication alone. It is therefore very important to have an

efficient design in terms of performance, area, speed of the

multiplier, and for the same Booth’s multiplication algorithm

provides a very fundamental platform for all the new advances

made for high end multipliers meant for faster multiplication with

higher performance. The algorithm provides an efficient encoding

of the bits during the first steps of the multiplication process. In

this paper an attempt has been made to design configurable logic

for 4/8/12/16-bit booth multiplier. This multiplier can be

configured to perform multiplication on 4 or 8 or 12 or 16 bit

operands. The multiplier will detect the range of the operands

through configuration register. The configuration register can be

configured through input ports. The multiplier has been

synthesized on Vertex 7 technology and it has achieved a

maximum combinational delay of 1.846ns.

Keywords — Booth Multiplier, Booth Multiplier Algorithm,

Configurable Booth Multiplier (CBM)

1. INTRODUCTION

Arithmetic and logic operations like addition,

multiplication, exponensation play a vital role in digital

circuits and have wide applications in the field of

engineering. The demand for high speed processing has been

increasing day by day as a result of expanding computer and

signal processing applications. Higher throughput arithmetic

operations are important to achieve the desired performance

in many real-time signal and image processing applications

[1]. Among these arithmetic operations, multiplication is the

key of almost every digital circuit and finds applications in

many Digital Signal Processing (DSP) systems such as

Convolution, Fast Fourier Transform (FFT), filtering , in

microprocessors in its arithmetic and logic unit and in

graphics [2].

Digital multipliers are the most commonly used
components in any digital circuit design. They are fast,
flexible, reliable and efficient components that are utilized to
implement any operation. Depending upon the arrangement
of the components, there are different types of multipliers
available. Particular multiplier architecture is chosen based
on the application. Development of fast multiplier circuit has
been a subject of interest over decades. Since multiplication

dominates the execution time of most DSP algorithms, so
there is a need of high speed multiplier[3,4].

Currently, execution time of multiplication is still the

dominant factor in determining the instruction cycle time of a

DSP chip. Many multiplication algorithms have been

proposed in literature to perform multiplication, each offering

different advantages and having tradeoff in terms of speed,

circuit complexity, area and power consumption. Reducing

the time delay and power consumption are very essential

requirements for many applications [1, 5].

 Low power multipliers with high clock frequencies play

an important role in today‘s digital signal processing [6,7,8].

That‘s why if one also aims to minimize power consumption,

it is of great interest to reduce the delay by using various

delay optimizations.

Various multiplication algorithms such as Booth, Array,

Wallace tree, Braun and Baugh Wooley have been proposed

in literature from time to time. Among these Donald Booth

made an improvement in the multiplier by reducing the

number of partial products generated. Booth used desk

calculators that were faster at shifting than adding and created

the algorithm to increase their speed [9]. To speed up the

multiplication Booth encoding performs several steps of

multiplication at once. Booth‘s multiplication algorithm takes

advantage of the fact that an adder, subtractor is nearly as fast

and small as a simple adder.

 In this paper, an attempt has been made to configure the

Booth multiplier using configuration register that can

supports single 4-bit, single 8-bit, single 12-bit or single 16-

bit data. This CBM depends upon the output of configuration

register that can be configured through input ports.Since there

are sequential and combinational multiplier implementations

but combinational case will be considered here because the

scale of integration is large enough to consider parallel

multiplier implementations in digital VLSI systems.

2. BOOTH MULTIPLIER

Andrew Donald Booth in 1951, devised a multiplication
algorithm which was named after his name as Booth‘s
Algorithm. Signed multiplication is a vigilant process.
Through unsigned multiplication there is no need to take the
sign of the number into consideration. Same procedure cannot
be applied for signed multiplication due to the reason that the
signed numbers are in a 2‗s compliment form which would

2609

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10785

give us inaccurate result if multiplied in an analogous manner
to unsigned multiplication [10].Unsigned multipliers cannot
be applied to most of the multimedia and DSP applications
due to their signed multiplication operation [11]. Thus here
Booth‗s algorithm comes in rescue. The Booth recording
multiplier scans the three bits at a time to reduce the number
of partial products generated [12].Booth‗s algorithm conserves
the sign of the end result, thus showing better performance in
terms of operating speed ,time delay, power dissipation and
area. From the basics of Booth Multiplication it can be proved
that the addition/subtraction operation can be skipped if the
successive bits in the multiplicand are same, thus reducing the
delay to a greater extent.

2.1 Booth Multiplication Algorithm

Booth‘s algorithm multiplies two signed binary numbers in

two‘s complement notation. Various steps involved in the

Booth‘s multiplication are as:

Step 1: From the two numbers under test decide which

operand will be multiplier and which will be the multiplicand

.Note that the number with smallest difference between a

series of consecutive numbers is chosen as a multiplier.

 For example if we have to multiply 10 (01010) and -5

(11011). For 10 (01010) we have ----- 0 to 1 one change,1 to

0 one change,0 to 1 one change and 1 to 0 one change .So ,

in total there are four changes in binary form of 10.

 For -5(11011),we have ---- 1 to 1 no change,1 to 0 one

change ,0 to 1 one change and 1 to 1 no change ,so in overall

there are only two change in -5.

Thus -5 (11011) is chosen as the multiplier and 10 (01010)

as the multiplicand.

Step 2: Begin with the product that consists of the multiplier

with an additional zero padding bits.Since our multiplier is

11011, after adding 5 leading zeros to the multiplier we get

our beginning product.

00000 11011------ Beginning product

Step 3: Use least significant bit LSB and previous LSB to

determine the arithmetic action.Intially 0 is chosen as the

previous LSB.Thus our initial product and previous LSB

becomes

00000 11011 0 ------ initial partial product

Prior to the shifting, the multiplicand may be added to partial

product, subtracted from the partial product, or left

unchanged according to the following rules:

00 No arithmetic action

01 Add multiplicand to the left half of the product.

10 Subtract multiplicand from the left half of the

product.

11 No arithmetic action

Place the result so obtained from arithmetic operations in
the left half of the beginning product.

Step 4: Perform an arithmetic right shift (ASR) on the entire

product for each pass. After X-passes we will get the required

result, where X is the number of bits in the input operands.

For the above example the result can be thus obtained after

five passes.

3. CONFIGURABLE BOOTH MULTIPLIER

3.1 Booth Multiplier Architecture

 Booth multiplier architecture consists of various blocks

each performing a certain task as:

1) A 16-bit register A that stores the value of

multiplicand,16-bit parallel-load shift registers B that stores

the multiplier initially, and the least significant 16 bits of the

final multiplication product.

2) The 16-bit parallel-load shift registers

ACCUMULATOR initially cleared is used for the storage of

final product . ACCUMULATOR and B are concatenated so

that the bit that are shifted out of ACCUMULATOR will be

shifted into B. Also, the right shift operation is sign

extended.For example, if ACCUMULATOR stores

1010101010101011 and B stores 0011111111000111,then

Figure 1 Flow Chart of Booth Multiplier

10 01

11 00

= 32 rep

 < 32 rep

 Start

Test multiplier [i: i-1]

Add multiplicand to

the left half of

the product and

place the result in

the left half of

the product

register

Subtract multiplicand

to the left half of

the product and

place the result in

the left half of

the product

register.

Arithmetic Right Shift (ASR)

 Done

Done

2610

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10785

after concatenated right shift operation, ACCUMULATOR =

1101010101010101 and B =1001111111100011.

3) The 16-bit Airthmetic Logic unit (ALU) will perform

the necessary arithmetic operations (addition ,subtraction etc)

accoding to the control signal provided by CONTROL block

after examining least two significant bits of the partial

product and then pass its output to 16-bit ACCUMULATOR.

4) After examining least two significant bits of the partial

products, the CONTROL block Y provides the necessary

control actions.

5) Operation of Control block Y is controlled by 4-bit

binary COUNTER that gives reference count to the

CONTROL block.

3.2 Configurable Booth Multiplier Working

From the basics of Booth multiplication algorithm we

came to know that number of passes or cycles to obtain the

final product depends upon the operand width. If the input

data is of the form of 001110(multiplier) and

001001(multiplicand) we have to go for six passes to obtain

the result .Since the significant data is contained in least 4

bits, output result can be obtained only after four passes by

suppressing most significant bits, being zero .That will not

only reduce the delay but also reduces the switching to a

greater extent. So, an attempt has been made to make the

Booth multiplier configurable to reduce the delay and power.

 Initially, range of both the operands A and B are detected

by Configuration register that is being configured through

input ports. Configuration register will detect whether the

computation will be done on 4 bit, 8 bit, 12 bit or 16 bit. After

range detection, further computation will be done according

to basic Booth‘s Algorithm. A register PA is taken, that will

store the concatenation of accumulator (4 bit or 8bit or 12 bit

or 16 bit, initially assigned with 0‘s), multiplier A (4 bit or 8

bit or 12 bit or 16 bit), and an extra least significant bit, LSB

(initially assigned with 0).Least two significant bits of PA

[1:0] are checked whether they are 00, 01, 10, and 11. If PA

[1:0] = 01, then PA + B operation will occur with single

ASR, and if PA [1:0] = 10, then PA – B will be calculated

with single ASR, else if PA [1:0] =00 or PA [1:0] = 11 then

no arithmetic operation will occur, only single arithmetic

right shift will be done on PA. This whole process of

checking of PA [1:0] bits will be done repeatedly and the

number of iterations will depend upon the range detected.

Finally, the final output will be saved in Accumulator.

3.3 Range detection by Configuration Register

The configuration register will detects the effective

dynamic range of input data and then generates the control

signal to determine the flow of data. To simplify the

implementation range detection can be realized by using the

group of input bits. The data detection starts from the most

significant bits, examining each four bit group. In the range

detection technique, both the input 16-bit operands A [16:0]

and B [16:0] are divided into four parts or subexpressions that

are A [15:12], A [11:8], A [7:4] and A [3:0] and B [15:12], B

[11:8], B [7:4] and B [3:0]. The size of both operands is

checked separately and simultaneously whether they come in

the range of 4 bits, 8 bits, 12 bits or 16 bits using the

following relation:

Ideal

Load

Shift Load

Add

Sub

Shift

Zero

Accumulator B

ALU

16-bit

Register A

Multiplicand

Counter

Figure 2 Booth Multiplier Architecture [13]

Go

Control

Block

Y

Iteration

control

Iteration control

16 bit register 16 bit register

Configuration

Register

Adder/Subtractor

Arithmetic Shifter

Booth

Controller

Accumulator

Figure 3 Working of Configurable Booth Multiplier

Multiplier

2611

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10785

 If (| (A[15:12]) ==1) (i.e. Performing Bitwise OR operation on four

MSB.)
 range A=2'b11

 else if(|(A[11:8]) ==1)

 rangeA=2'b10;

 else if (| (A[7:4])==1)

 range A=2'b01;

 else if (|(A[3:0])==1)

 range A=2'b00;

 else if(|(A[11:8])==1)

 range A=2'b10;

 else if(|(A[15:12])==1)

 range A=2'b11

In the similar manner range is detected for B and the final

range is decided by the relation:

if (range A > range B)

 range=range A

 else

 range= range B

This procedure of range detection minimizes the

generation of partial products to a greater extent by

suppressing the most significant bits if they are zero.

Calculation will become shorter, faster and efficient..

4. RESULTS

4.1 Simulation Results

For the model under consideration the simulation results

are carried out using Verilog HDL as simulation tool and

Modelsim as simulator. Simulation results for various input

operands A [15:0] and B [15:0] to obtain P [31:0] have been

verified.

TABLE 1

.

RESULT FOR VARIOUS INPUTS

OF DIFFERENT
RANGE

Before you begin to format your paper, first write and sa

the content as a

A[15:0]

B[15:0]

P[31:0]

Range

1010 1000

0011 0011

(Adec= -22477)

0011 0101

0100 0000

(Bdec

= 13632)

11101101101111001

001101111000000

(Pdec= -306406464)

16

 0000 0101

0100 0011

(Adec = 1347)

0000 0001

1111 1110

(Bdec

= 510)

00000000000010100

111101101111010

(Pdec= 686970)

12

 0000 0000

0101 1111

(Adec= 95)

0000 0000

0011 1010

(Bdec

= 58)

00000000000000000

001010110000110

(Pdec= 5510)

8

0000 0000

0000 0110

(Adec= 6)

0000 0000

0000 0111

(Bdec= 7)

00000000000000000

000000000101010

(Pdec= 42)

4

Figure 4 Simulation Result for A=1010 1000 0011 0011

and B= 0011 0101 0100 0000

Figure 5 Simulation Result for A=0000 0101 0100 0011 and

B= 0000 0001 1111 1110

Figure 6 Simulation Result for A=0000 0000 0101 1111 and

B=0000 0000 0011 1010

Figure 7 Simulation Result for A=0000 0000 0000 0110 and

B=0000 0000 0000 0111

2612

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10785

4.2 Synthesis

The multiplier has been synthesized on Vertex 7 FPGA

Board. A detailed summary of devices utilized and timing

summary has been shown below:

TABLE 2.

SUMMARY OF DEVICES UTILIZED IN CONFIGURABLE

BOOTH MULTIPLIER

Parameter Value

Latches 1-bit Latch 22

Comparators 2-bit Comparator 1

Multiplexers

1-bit 2-to-1 multiplexer

2-bit 2-to-1multiplexer

33-bit 3-to-1 multiplexer

47

13

 1

TABLE 3.

TIMING SUMMARY

Delay Value

Minimum input arrival time before clock:

1.042ns

Maximum output required time after clock:

 1.575ns

Maximum combinational path delay:

 1.846ns

From the above analysis of delay, Configurable booth

multiplier is delay efficient .The Combinational delay of

Configurable booth Multiplier is 1.84ns which is quiet low

than the simple booth multiplier having a delay of 7-10ns.

5:CONCLUSION

We have presented a 4/8/12/16-bit configurable booth

multiplier. This multiplier can be configured to perform 4 or

8 or 12 or 16 bit operands depending upon the output of

configuration register. The multiplier will detect the range of

the operands through configuration register. The

configuration register can be configured through input ports.

This process of configuration not only reduces the

combinational path delay but also reduces power

consumption to a larger extent. It also deactivates the

redundant switching activities in ineffective ranges as much

as possible. The proposed multiplier is very suitable for

portable multimedia and DSP applications which require

flexible processing ability, lesser switching activity and short

design cycle. The multiplier has been synthesized on Vertex 7

FPGA Board and it has achieved a maximum combinational

delay of 1.846ns.

REFERENCES

 [1]

Himanshu

Thapliyal and Hamid R. Arabnia, ―A Time-Area-

Power

Efficient Multiplier and Square Architecture Based On Ancient Indian

Vedic Mathematics‖, Department of Computer Science, The University
of Georgia, 415 Graduate Studies Research Center Athens, Georgia

30602-7404, U.S.A.

 [2]

Purushottam D. Chidgupkar and Mangesh T. Karad, ―The
Implementation of Vedic Algorithms in Digital Signal Processing‖,

Global J. of Engng. Educ., Vol.8, No.2 © 2004 UICEE Published in

Australia.

 [3]

Low Power and High speed 8*8 bit Multiplier using non clocked Pass

Transistor Logic,C.Senthilpari Ajay Kumar Singh

and K Diwadkar

14244-1355-9/2007,IEEE

 [4]

Kiat-Sang Yeo and Kanshik Roy ―Low voltage Low Power VLSI Sub

System‖

Mc Graw-

Hill Publication

 [5]

E. Abu-Shama, M. B. Maaz, M. A. Bayoumi, ―A Fast and Low Power
Multiplier Architecture‖, The Center

for Advanced Computer Studies,

The University of Southwestern Louisiana Lafayette, LA 70504.

Combinational Path Delay

8

7

6

5

4

3

2

1

1.84ns

Configurable Booth

 Multiplier

Booth
Multiplier

7-10ns

 Figure 8: Graphical representation of Combinational Delays

2613

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10785

[6] Padmanabhan Balasubramanian and Nikos E. Mastorakis, ―High Speed

Gate Level Synchronous Full Adder Designs,‖ WSEAS
TRANSACTIONS on CIRCUITS and SYSTEMS Issue 2, Volume 8,

290-300, February 2009.

[7] Sanjiv Kumar Mangal,Rahul M.Badghare,― FPGA Implementation of
Low Power Parallel Multiplier‖,10th International Conference on VLSI

Design,2007.

[8] Yingtao Jiang, Abdulkarim Al-Sheraidah, Yuke Wang, Edwin Sha, and
Jin-Gyun Chung, ― A Novel Multiplexer-Based Low-Power Full

Adder,‖ in IEEE transactions on circuits and systems vol. 51, no. 7, July

2004
[9] L.D. Van and C. C. Yang, ―Generalized low-error area efficient fixed

width multipliers,‖ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no.

8, pp. 1608–1619, Aug. 2005.
[10] Laxman S, Darshan Prabhu R, Mahesh S Shetty ,Mrs. Manjula BM, Dr.

Chirag Sharma,FPGA Implementation of Different Multiplier

Architectures, International Journal of Emerging
[11] Shiann-Rong Kuang and Jiun-Ping Wang ― Design of Power efficient

Configurable Booth Multiplier Vol.57,No3,March1010

[12] Tam Anh Chu, ―Booth Multiplier with Low Power High Performance
Input Circuitary‖, US Patent, 6.393.454 B1,May 21, 2002.

[13] ECE/Comp. Sci. 352 – Digital System Fundamentals, Project #2 (Spring

2000), Department of Electrical and Computer Engineering, University
of Wisconsin – Madison, April 2000

2614

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10785

