

Design of Efficient Fast Fourier Transform

Shymna Nizar N. S

PG student, VLSI & Embedded Systems, ECE Department

TKM Institute of Technology

Karuvelil P.O, Kollam, Kerala-691505, India

Abhila R Krishna
Assistant professor, ECE Department

TKM Institute of Technology

Karuvelil P.O, Kollam, Kerala-691505, India

Abstract-Fast Fourier Transforms have become an integral

part of any digital communication system and a wide variety

of approaches have been tried in order to optimize the

algorithm for a variety of parameters, primarily being memory

and speed. Major problem in FFT calculation is the increased

number of complex multiplication units. Folding

transformations are used to design FFT architectures with

reduced number of functional units. In the folding

transformation, many butterflies in the same column can be

mapped to one butterfly unit. A highly efficient pipelined

folded FFT architecture for 8 point R2 FFT is presented here.

When compared with the normal R2 FFT architecture, the

pipelined architecture shows efficiency both in speed and area

consumption. The FFT block is designed to be capable of

computing 8 point FFT and employs R2 (Radix2) architecture

which is simple, elegant and best suited for communication

applications. VHDL coding is simulated and synthesized in

Xilinx ISE Design Suite 12.1.

Keywords—FFT, Pipelining, folding transformation, life time

chart, register allocation, FPGA.

I. INTRODUCTION

 The discrete Fourier transform (DFT) is an

important signal processing block in various applications,

such as communication systems, speech, signal and image

processing. The efficient implementation of DFT is

fundamental in many cost and hardware constraint

applications. One such method is co referred as fast Fourier

transform (FFT) algorithm. FFT is an important digital

signal processing (DSP) technique to analyse the phase and

frequency components of a time-domain signal. An N point

FFT can compute the DFT in only (Nlog2 N) operations.

The difference in speed can be substantial, especially for

long data sets where N may be in the thousands or millions.

In practice, the computation time can be reduced by several

orders of magnitude in such cases, and the improvement is

roughly proportional to N=log2 N.

This huge improvement made the calculation of the DFT

practical. FFTs are of great importance to a wide variety of

applications, from digital signal processing and solving

partial differential equations to algorithms for quick

multiplication of large integers.

II. LITERATURE SURVEY

The Discrete Fourier Transform (DFT) is obtained

by decomposing a sequence of values into components of

different frequencies. This operation is useful in many fields

but computing it directly from the definition is often too

slow to be practical. Computing the DFT of N points in the

naive way, using the definition, takes N
2

arithmetical

operations. The DFT is the most important discrete

transform, used to perform Fourier analysis in many

practical applications The DFT of of input sequence x(n),

according to the DFT formula is:

X (1)

 (2)

where is the twiddle factor

A. Applications of DFT

The discrete Fourier transform finds limitless

applications in many areas of signal processing. In the era of

fast computing it has become increasingly important to

enhance the existing FFT algorithms to meet the ever

increasing applications in the field of digital signal

processing. DFTs have also been extensively used in multi-

carrier transmission systems like orthogonal frequency

domain multiplexing (OFDM) as FFT processors. In multi-

carrier modulation, such as OFDM and discrete multi tone

(DMT), data symbols are transmitted in parallel on multiple

sub-carriers. Multi-carrier modulation based transceivers

involve real-time DFT computations [9]. FFT based channel

estimation method is derived from the maximum likelihood

criterion, which is originally proposed for OFDM systems

with pilot preambles. In order to save bandwidth and

improve system performance, decision-feedback (DF) data

symbols are usually exploited to track channel variations in

subsequent OFDM data symbols, and this method is called

DF DFT-based channel estimation.

 DFT is extensively used in sonar and radar

systems. These systems use millions of multiplications per

second. Computerized tomography is widely used to

synthetically form images of internal organs of the human

body where in massive amounts of signal processing is

required. Remote sensing is another field employing huge

amount of processing. Satellite photographs can be

processed digitally to merge several images or enhance

features or combine information received on different

wavelengths.

2082

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21097

B. Fast Fourier Transform(Fft)

The idea behind the FFT is the divide and conquer

approach, to break up the original N point sample into two

(N=2) sequences. This is because a series of smaller

problems is easier to solve than one large one. The DFT

requires (N - 1) *2 complex multiplications and N *(N - 1)

complex additions as opposed to the FFT's approach of

breaking it down into a series of 2 point samples

.Decimation is the process of breaking down something into

its constituent parts. Decimation in time involves breaking

down a signal in the time domain into smaller signals, each

of which is easier to handle. If the input (time domain)

signal, of N points, is x(n) then the frequency response X(k)

can be calculated by using the DFT . Since the

recombination algebra of FFT takes N complex

multiplications and there are log2 (N) stages, the

approximate number of complex multiplications is N log2

(N).This means that this decimation approach has reduced

the number of complex multiplications from N squared (N
2
)

to Nlog2(N). At high values of N (i.e., large signals) this is a

massive saving. The recombination uses flow graph notation

and is called a butterfly network .

 Table 1.Bit Reversal Property

In-

order

index

In-order

index in

binary

Bit-reversed

binary

Bit-reversed

index

0

1

 2

 3

 4

 5

 6

 7

000

001

010

011

 100

 101

 110

 111

000

100

010

 110

 001

 101

 011

 111

0

4

2

6

1

5

 3

 7

The input-output relation is obtained by using the

Bit reversal property. The process of decimating the signal

in the time domain has caused the input samples to be re-

ordered. For an 8 point signal the original order of the

samples is 0, 1, 2, 3, 4, 5, 6, 7 .But after decimation the bit

reversed order as per the table 2.1 is 0, 4, 2, 6, 1, 5,

3, 7 .

 a A= a+Wb

 b -1 B=a-Wb

Figure 1. Basic butterfly computation in the DIT FFT algorithm

The FFT butterfly is a graphical method of

showing multiplications and additions involving the

samples. Standard graph flow notation is used where each

circle with entering arrows is an addition of the two values

at the end of the arrows multiplied by a constant. The

constant is a number which appears beside the arrow, if

there is no value then the constant is taken as one. Figure 1

shows the butterfly diagram of DIT FFT. If the inputs are a

and b ,then the output after twiddle factor multiplication will

be a+Wb and a-Wb respectively. For DIF FFT the result

will be a+b and (a-b)W. The FFT has a fairly easy algorithm

to implement, and it is shown step by step in the list below.

1. Pad input sequence, of N samples; with zeros until the

number of samples is the nearest power of two. E.g. 500

samples are padded to 512.

2. Bit reverse the input sequence. E.g. 3 = 011 goes to 110 =

6.

3. Compute (N=2) two sample DFT's from the shuffled

inputs.

4. Compute (N=4) four sample DFT's from the two sample

DFT's.

5. Compute (N=2) eight sample DFT's from the four sample

DFT's.

6. Until the all the samples combine into one N-sample

DFT.

Figure 2. Basic butterfly computation in 8 point R2 DIF FFT algorithm.

C. Computational Complexities

Discrete Fourier Transform is complicated to work

out as it involves many additions and multiplications

involving complex numbers. Even a simple eight sample

signal would require 49 complex multiplications and 56

complex additions to work out the DFT. At this level it is

still manageable; however a realistic signal could have 1024

samples which requires over thousands of complex

multiplications and additions. The number of calculations

required soon mounts up to unmanageable proportions.

The paper is organized as follows. The different

existing techniques for DFT calculations and the problems

related to these techniques are explained in section II.

section III explains about FFT, it’s butterfly method of

calculation and the proposed method of FFT calculation by

using folding and pipelining concept are also in it .The

simulation results are discussed in detail in Chapter IV.

2083

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21097

Conclusions and on going works are discussed in the last

section.

III. PROPOSED METHOD

From the hardware perspective, Field Programmable

Gate Array (FPGA) devices are increasingly being used for

hardware implementations in communications applications.

FPGAs at advanced technology nodes can achieve high

performance, while having more flexibility, faster design

time, and lower cost. As such, FPGAs are becoming more

attractive for FFT processing applications and are the target

platform of this discussion. The architecture applies well to

real time data streaming scenarios and the architecture is

discussed with respect to Decimation in Frequency (DIF)

type of decomposition. The architecture design for pipeline

FFT Processor's had been the subject of intensive research

as early as 1970's when real time processing was demanded

in such applications such as radar signal processing, well

before the VLSI technology had advanced to the level of

system integration. Several architectures have been

proposed over the last 2 decades since then, along with the

increasing interest and the leap forward of the technology.

Radix-2 multi-path delay commutator is one of the most

classical approaches for pipelined implementation of radix-2

FFT. Efficient usage of the storage buffer in R2 multi-path

delay commutator leads to the Radix-2 Single-path delay

feedback architecture with reduced memory. The prior FFT

architectures were derived in an adhoc way, and their

derivations were not explained in a systematic way. Here a

pipelined folded DIF FFT architecture is derived by using

folding transformation, register minimization and linear life

time chart.

A. Folding transformation

The folding transformation is used to systematically

determine the control circuits in DSP architectures where

multiple algorithm operations are time multiplexed to a

single functional unit there by reducing the number of

functional unit in implementation resulting in an IC with

low silicon area[8].

 Figure 3. Data flow graph

Folding transformation can be explained with an

example .Consider two edges U and V with delay w(e) in

between them . Data Flow Graph (DFG) of it is shown in

the figure 3.

B. Folding order (u,v)

It is the time partition to which a particular node is

scheduled to execute the hardware function.

C.

Folding factor (N)

It is the number of operations folded to a single

functional unit. If hardware Hu is pipelined by Pu stages

,then the result of lth iteration of node U is available at the

time unit Nl+ U + Pu . Since the edge U 

V has w(e)

delay’s, the result of l’ th iteration of node U is used by

the (l+w(e))’ th iteration of node v, which is executed at

 N(l +w(e))+v

 (3)

There for result must be stored for Df (UV)

 = [N(l+w(e))+v]-[Nl+Pu+u]

 (4)

= Nw(e)-Pu+v-u

 (5)

Figure 4. Folded DFG

So the the new delay Df

can be calculated by using the

equation 3.5.Folded data flow graph of figure 3

is shown in

figure 4

with the new delay Df.

D. Folding

set

It is an ordered set of operations executed by the same

functional unit. Each folding set contains N entries .Some

of

which may be null operations .

For a folding set to be

realizable Df(UV) >= 0 must hold for all of the edges in

the Data Flow Graph. The DFG can be pipelined to ensure

that the folded hardware has non-negative number of delays.

E. Feed-forward architecture

Figure 5.

DFG of 8 point DIF FFT

For obtaining a feed forward architecture of FFT, a

folding set has to be derived from the DFG of FFT which is

shown in figure 5.

Here FFT is divided in to 3 sections of 4

operations each. Where nodes A0,A1,A2,A3

performs the

functions of section 1. Similarly nodes B0,B1,B2,B3 and

nodes C0,C1,C2,C3 performs the functions of sections II

and II respectively. Each node performs a butterfly

operation.

 U

 W(e)
 V

2084

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21097

The folding sets considered are

 A = {Ǿ, Ǿ, Ǿ, Ǿ, A0,A1,A2,A3}

 B = {B2,B3,Ǿ, Ǿ, Ǿ, Ǿ,B0,B1}

 C = {C1,C2,C3,Ǿ, Ǿ, Ǿ, Ǿ,C0 }

Assume that the butterfly operations do not have any

pipeline stages, i.e Pa = Pb=Pc=0. The folded architecture

can be derived by writing the folding equation Df(UV) =

Nw(e)-Pu+v-u for all the edges in the DFG. The folded

delays for the DFG are given by

DF(A0B0) = 2 DF(B0C0) = 1

DF(A0B2) = - 4 DF(B0C1) = -6

DF(A1B1) = 2 DF(B1C1) = 0

DF(A1B2) = -4 DF(B1C1) = -7

DF(A2B0) = 0 DF(B2C2) = 1

DF(A2B2) = -6 DF(B2C3) = 2

DF(A3B1) = 0 DF(B3C2) = 0

DF(A3B3) = -6 DF(B3C3) = 1

For example,

Consider,

DF(A0B0) = 2

It means that there is an edge Df (UV) from the

butterfly node A0 to the node B0 in the folded DFG that is

having two delays. For the folded system to be realizable,

Df (UV) >=0 must hold for all the edges in the DFG.

From the delay calculation some edges are obtained

with negative delays which are not realizable. DFG has to

be pipelined for avoiding these negative delays so that the

system can be realized.

 Figure 6. Pipelined DFG of 8 point FFT

 Figure 6. shows the pipelined DFG of 8 point DIF FFT.

Dotted lines shows the cutset which is used to pipeline the

DFG so as to ensure that folded hardware has non-negative

delays.

The folded delays for the pipelined DFG are given by

DF(A0B0) = 2 DF(B0C0) = 1

DF(A0B2) = 4 DF(B0C1) = 2

DF(A1B1) = 2 DF(B1C1) = 1

DF(A1B2) = 4 DF(B1C1) = 1

DF(A2B0) = 0 DF(B2C2) = 1

DF(A2B2) = 2 DF(B2C3) = 2

DF(A3B1) = 0 DF(B3C2) = 0

DF(A3B3) = 2 DF(B3C3) = 1

F. Life time analysis

From delay calculations of pipelined DFG, it can be

observed that ,24 registers are required to implement the

folded architecture. Lifetime analysis technique is used to

design the folded architecture with minimum possible

registers[5]. A data sample (also called a variable) is live

from the time it is produced through the time it is consumed.

After the variable is consumed, it is dead. A variable

occupies one register during each time unit ,in which it is

live. In lifetime analysis, the number of live variables at

each time is computed, and the maximum number of live

variables is determined . This is the minimum number of

registers required to implement the DSP program.

Figure 7. Linear life time chart

A linear life time chart graphically represent the

lifetime of each variable in a linear fashion. For example, in

the current 8-point FFT design, consider the variables

y0,y1,….y7 i.e.,the outputs at the nodes A0,A1,A2,A3

respectively. It takes 16 registers to synthesize these edges

in the folded architecture.

The linear lifetime chart for the variables y0,….y7

is shown in Figure 7. The horizontal lines represent clock

cycles and the vertical lines represent the life time of the

variables. Here the variable y0 is produced at the clock

cycle 4 and is dead at clock cycle 6 .By the convention that

the variable is not live during the clock cycle it is produced

but is live during the clock cycle it is consumed, y0 is live

during clock cycles 5 and 6. Similarly for each variables we

can determine the lifetime.

From the lifetime chart, it can be seen that the

folded architecture requires 4 registers as opposed to 16

registers in a straight forward implementation since the

maximum number of live variables is equal to the minimum

number of registers. The next step is to perform forward-

backward register allocation.

G. Register minimization technique

Once the minimum number of registers required to

implement the DSP program has been determined, the data

need to be allocated to these registers. Forward backward

register allocation is an allocation scheme that can be used

to allocate data to the minimum number of registers[7].

2085

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21097

Register allocation can be performed using an allocation

table. The allocation scheme dictates how the variables are

assigned to registers in the allocation table. The steps used

to perform forward –backward register allocation are as

follows.

Step 1: Determine the minimum number of registers using

lifetime analysis.

Step 2: Input each variable at the time step corresponding to

the beginning of its lifetime. If multiple variables are

inputted in a given cycle , these are allocated to multiple

registers such that the variable with the longest lifetime is

allocated to the initial registers and the other variables are

allocated to consecutive registers in decreasing order of

lifetime.

Step 3: Each variable is allocated in a forward manner until

it is dead or it reaches the last register .If the register is not

available, then the variable is allocated to the first available

forward register.

Step 4: Since the allocation is periodic, the allocation of the

current iteration also repeats itself in subsequent iterations.

Step 5: For variables that reach the last register and are not

yet dead, the remaining life period is calculated ,and these

variables are allocated to a register in a backward manner on

a first come first served based. If multiple registers are

available for backward allocation, first the register that was

already used for backward allocation from the last register

to this register has to be used.

 In the case where more than one register qualifies

for backward allocation, choose the register with the

minimum number of forward registers among all candidate

registers that have a sufficient number of forward registers

to complete the allocation of the variable. After a variable

has been allocated backward, allocate it forward until it is

dead or it again reaches the last register.

Step 6: Repeat steps 4 and 5 as required until the allocation

is complete.

 Figure 8. Register allocation table

For example, let’s take y0,y4 which are inputted at the

4
th

clock

cycle. From the life time chart y4 has the largest

clock cycle than y0,so by the steps of register minimisation

technique y4 is inputted to R1 and y0 in to R4 so that y0 is

outputted at the 6
th

 clock cycle .

H. Pipelined folded 8 point DIF FFT architecture

Similarly lifetime analysis and register allocation

techniques can be applied for the variables x0,x1,….x7 and

z0,z1…z7 , inputs to the DFG and the outputs from nodes

B0,B1,B2,B3 and C0,C1,C2,C3respectively.

Figure 9. Pipelined Folded 8 point DIF FFT architecture

From the allocation table in figure 8. and the folding

equations, the final architecture in figure 9. can be made.

Where BF1,BFII and BFIII represents the butterfly units .D

represents the delay units for the proper synchronization of

the inputs. The first input of BF1 will be x(0) and x(4)

.Similarly, first output will be x(0) and x(4).

IV. SIMULATION RESULTS

The design entry is modelled using VHDL in

Xilinx ISE Design Suite 12.1 and the simulation of the

design is performed using Isim from Xilinx ISE to validate

the functionality of the design. Figure 4.1 shows the

magnitude and phase response of the FFT results by using

the MATLAB FFT function .MATLAB results are used for

checking the FFT outputs

A. MATLAB result

Figure 10. Matlab FFT results

2086

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21097

B. XILINX simulation result of 8 point FFT

Here the real inputs are represented by

x(0),x(1)……x(7) and it’s corresponding FFT outputs are

shown by y(0),y(1)……..y(7).The outputs are obtained at

1,150,000ps.

Figure 11: 8 point FFT results

 C. XILINX simulation results of pipelined

folded R2 8 point DIF FFT

By using the blocked diagram of pipelined folded 8

point R2 DIF FFT, architecture was developed in VHDL

.For the correct synchronisation of the inputs delay units are

used . Simulation results of 4 delay and 1 delay are shown in

figure 12. and 15. As per the architecture, output of the 4 D

and the inputs are given to butterfly units one after the other

by using mux and registers. Output of BF1 is shown in

figure13. The full output of 8 point R2 pipelined folded DIF

FFT is shown in figure 15 .

Figure 12.4 Delay unit

Here the real and imaginary part of the input are

given separately as an array of 8 input where .x_r and x_i

represents the real and imaginary parts of it.

 Figure 13. Butterfly unit I

when the input is given to 4D ,the output is

produced only after the 4 clock cycle which is done because

of the fact that BF unit I needs x(0) and x(4) as the first

input for processing. Butterfly unit performs the

corresponding butterfly operations along with the twiddle

factor multiplication.

Figure 14. Output of 6 th clock cycle from mux 2 and R4

 The allocation table of figure 8 shows that the first

output of the R4 is available only after the 6
 th

 clock cycle

.Simulation result of figure 14. shows this ,where output

from mux 2 and R4 which is the input of BFII is obtained

only after the 6 th clock cycle.

2087

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21097

 Figure 15. 1Delay unit

Similar to 4 Delay generation 1 delay unit as

represented in figure 15. is also used for proper

synchronisation of inputs to BFIII.

Figure 16. 8 point pipelined folded DIF FFT

Figure 16.8 represents the full FFT output .Here

also the real and imaginary part of the input and output are

obtained separately.y11_r and y11_i represents the real and

imaginary part of the first 4 outputs. Similarly y22_r and

y22_i represents the real and imaginary part of the last 4

outputs. Here the outputs starts to come at 850,000 ps.so it

is clear that pipelined architecture produces the output with

less time than the normal architecture.

Figure 17. Synthesize report of 8 point pipelined folded DIF FFT

Figure 18.Synthesize report of 8 point normal DIF FFT

The synthesize report of two architectures shows that

pipelined architectures produces the results very efficiently

in less time with less number of slices in FPGA.

V. CONCLUSIONS

Folding transformations are used to design FFT

architectures with reduced number of functional units. In the

folding transformation, many butterflies in the same column

can be mapped to one butterfly unit. The FFT block is

designed to be capable of computing 8 point FFT and

employs R2 (Radix2) architecture which is simple, elegant

and best suited for communication applications. The

pipelined folded DIF FFT processor and the normal

architecture based FFT processor has been simulated and

synthesized successfully in HDL environment. The

performance analysis shows that the pipelined architecture

produces the results very fastly than normal architecture

while consuming less number of slices than normal butterfly

architecture of FFT.

2088

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21097

REFERENCES
[1] Akash Verma, B.S. Rai “Analysis of synthesis issues about designing

DSP devices”International Journal of Advanced Research in

Electrical,Electronics and Instrumentation Engineering(An ISO

3297: 2007 Certified Organization) Vol. 2, Issue 8, August 2013
[2] Pramod Kumar Meher, Senior Member, IEEE, and Sang Yoon Park,

Member IEEE “CORDIC Designs for Fixed Angle of Rotation”

IEEE Transactions on very large scale integration (vlsi) systems,
vol. 21, no. 2, february 2013

[3] Mario Garrido, J. Grajal, M.A. S ´anchez and Oscar Gustafsson,

Pipelined Radix- 2k Feedforward FFT Architectures” IEEE
Transactions on very large scale integration (vlsi) systems, (21), 1,

23-32.june 2013

[4] Xilinx, Inc., “Virtex-5 FPGA User-Guide,”UG190, v4.5, p. 383, Jan.
2009

 [5] K.K.Parhi, “Calculation of minimum number of registers in arbitary

life time chart,”IEEE Trans.on Circuits and Systems-II,vol

.41,no.6,pp.434-436 June 1994.

[6] K.K.Parhi,C.-Y.Wang, and A.P.Brown, “Synthesis of control

circuits in folded pipelined DSP architecture,”IEEE Journal of Solid
–State Circuits,vol .27,no.1,pp.29-43,Jan .1992.

[7] K. K. Parhi, ”Systematic synthesis of DSP data format converters

using lifetime analysis and forward-backward register allocation,”
IEEE Trans. on Circuits and Systems - II, vol. 39, no. 7, pp. 423-

440, July 1992.

2089

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21097

