
Design of Hardware Implementable AES with

Minimal Resource Utilization

K. Hemalatha,

PG scholar

Dept. of Electronics and Communications Engineering

JNTU College of Engineering, Anantapur

Anantapur, AP, India.

B. Doss,
M.Tech, (Ph.D)

Lecturer, Dept. of ECE

JNTU College of Engineering Anantapur

Anantapur, AP, India.

Abstract: This paper presents a new method for the

hardware implementation of AES algorithm. As the resource

utilization plays a vital role in all hardware implementations,

this paper mainly focused on utilization of minimal resources. It

has been achieved with the help of Galois field transformation

and masking. In this brief the operations of AES have been

mapped from GF (28) to GF (22) as much as possible, so that all

the operations have been performed over GF (22) and at last the

results are transformed back to GF (28) from GF (22). In

addition to this transformation Boolean masking is applied to

the encription algorithm.

I. INTRODUCTON

Physical networks such as Storage Area networks

(SANs) require hardware implementable AES algorithm to

ensure security. Since Field Programmable Gate Arrays

(FPGAs) are attractive options for the hardware

implementation of encryption algorithms, most of the early

works have been worked in that way. But it requires large

FPGA resources. However FPGA boards provide limited

amount of resources so the design should be such that to be

fit into the board.

The normal AES has been broken by Kocher et al. for the

first time in 1999 with the help of power analysis attacks [1].

Also he stressed that the information leaked from microchips

and computers has correlation with the data handled in

physical devices. The power analysis attacks habitually

targets one particular circuit. Hence identifying the target is

the first step in power analysis. Next is estimating a

hypothetical model of device’s power consumption [2].

Based on that information secret key has been extracted. As

most of the present FPGAs are made up of CMOS gates, the

power consumption depends on number of bit transitions in

the device registers. Moreover the steps involved in

encryption algorithm are familiar to everyone.

With time DPA attack has become stronger. So to

overcome those threats numerous works have been done for

implementing AES with the ability to defend against the

attacks mentioned earlier.

One of the solutions derived for the above problem is to

apply masking schemes for the round function of AES

algorithm. The two better masking schemes that suits the

AES algorithm is

i. Multiplicative masking

ii. Boolean masking.

Realization of multiplicative masking can be done by using

standard CMOS cells. But it is proven that multiplicative

masking is vulnerable to DPA attacks.

Whereas the realization of Boolean masking is easier than

that of multiplicative masking. So in this Boolean masking is

used.

II. DEFINITION OF BOOLEAN MASKING

Boolean masking is defined as follows. In this masking

scheme simple ex-or operation is performed between the

random mask and the data [3]. It illustrated as below.

𝑥′ = 𝑥 ⊕ 𝑟

Where x is input to the mask, x’ is output of the mask and r

refers to random mask.

The masking operations can be explained in detailed as

below. If

𝑥3 = 𝑥1⨁𝑥2

Then the masked output is given as

𝑥1
′ = 𝑥1⨁𝑟1

𝑥2
′ = 𝑥2⨁𝑟2

And 𝑥3
′ = 𝑥1′⨁𝑥2′

Then 𝑥3 = 𝑥3
′ ⊕ 𝑟3

Where 𝑟3 = 𝑟1⨁𝑟2

Many research works suggested that Boolean masking is

resistant to DPA attacks. With the application of masking

schemes, the actual data divides into multiple halves.

Moreover this masked data will be distributed uniformly as

compared to actual data. For this reason intruders have to

estimate compound distributions for each portion of the

masked data. As a result the computation complexity gets

increased exponentially.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070702

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

893

Among the round operations of AES, only the subbytes

operation is non-linear. Hence the masking has to be applied

outside of this function. This is illustrated in the below figure

1.

As substitution of bytes is the only non linear operation of

AES round function, care has to be taken while applying

masking schemes [4].

III. CALCULATIONS ON GALOIS FIELDS

In general a field is more than just a set of elements. The

field that contains finite number of elements is usually called

as Galois field. Following are the operations that are

performed over the GF (28) [5].

Let a(x), b(x) be two fourth order polynomials, the

addition and multiplication operations are given as

𝑎(𝑥) = 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0

𝑏(𝑥) = 𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0

Then the addition is

𝑎(𝑥) + 𝑏(𝑥) = (𝑎3 ⊕𝑏3)𝑥
3 + (𝑎2 ⊕ 𝑏2)𝑥

2 + (𝑎1 ⊕ 𝑏1)𝑥
+ (𝑎0 ⊕ 𝑏0)

That means addition operation is nothing but performing Ex-

OR operation between the coefficients of like powers.

Multiplication operation is defined as

 𝑐(𝑥) = 𝑎(𝑥) ⋅ 𝑏(𝑥)

𝑐(𝑥) = 𝑐6𝑥
6 + 𝑐5𝑥

5 + 𝑐4𝑥
4 + 𝑐3𝑥

3 + 𝑐2𝑥
2 + 𝑐1𝑥 + 𝑐0

Where 𝑐0 = 𝑎0 ⋅ 𝑏0

 𝑐1 = 𝑎0 ⋅ 𝑏1⨁𝑎1 ⋅ 𝑏0

 𝑐2 = 𝑎2 ⋅ 𝑏0⨁𝑎1 ⋅ 𝑏1⨁𝑎0 ⋅ 𝑏2

 𝑐3 = 𝑎3 ⋅ 𝑏0⨁𝑎2 ⋅ 𝑏1⨁𝑎1 ⋅ 𝑏2⨁𝑎0 ⋅ 𝑏3

 𝑐4 = 𝑎3 ⋅ 𝑏1⨁𝑎2 ⋅ 𝑏2⨁𝑎1 ⋅ 𝑏3

 𝑐5 = 𝑎3 ⋅ 𝑏2⨁𝑎2 ⋅ 𝑏3

 𝑐6 = 𝑎3 ⋅ 𝑏3

The result of multiplication does not have four bits like

addition operation. So to convert the result modulo operation

has to be performed. For AES algorithm it is gets done with

the polynomial𝑥4 + 1. But on GF (28) the above mentioned

polynomial is an irreducible polynomial. Hence the results of

those operations need large memory for storage.

IV. AFFINE TRANSFORMATION

Since the computations over the field GF (28) require

large memory resources, here comes the need of

transformation from GF (28) to GF (22). This can be

accomplished with the help of affine transformation.

If the operation to which masking is to be applied is a

linear operation, it follows the re computation of additive

constant for each new mask to facilitate the equivalence of

the data transformations. But the case is different if the

operation is non-linear [5].

V. PREVIOUS WORK

Yi Wang and Yajun Ha proposed a strategy and they

proved that storage requirement has been reduced by 20.5%,

if the operations of AES implementation are performed over

GF (24) [6]. The block diagram is given in fig 2.

Masked input Ai⊕X

SubBytes

Other round

functions

Key from

key

expansion

block

Encrypted data

Fig 1: masking outside of subbytes step

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070702

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

894

Affine transformation involved in this implementation is:

Let the input values to the map function be (z+m) and m.

the output values be (z+m)’ and m’. Then the input belongs

to GF (28) and the output belongs to GF (24).

They keep up the relation

(z+m+m)’ = map (z+m+m) (1)

General form of affine transformation is (Ax+b), by applying

this to the above equation

A (z+m+m)+b = A map-1 (z+m+m)’+b (2)

After mapping from GF (28) to GF (24)

Map (A (z+m+m)+b)=map(Amap-1(z+m+m)’+b) (3)

The Galois field with 256 elements has irreducible

polynomials which means that all the operations have to be

performed over those polynomials. The two irreducible

polynomials of GF (28) are (x4+x+1) and (x2+x+e). one is of

degree 4 and the other is of degree 2. Poerations performed

over GF (28) requires large memory resources to store their

results. So, for that reason transformation has been done from

GF (28) to GF (24). By resolving the above equations the

affine transformations over GF (28) can be obtained. And the

resultant matrices are given as





































































1

1

0

0

0

1

1

0

10001111

11000111

11100011

11110001

11111000

01111100

00111110

00011111

bA

VI. PROPOSED AES IMPLEMENTATION OVER GF

(22)

As this paper mainly focusing on minimization of

resource utilization, GF (22) is chosen to perform masked

AES operations. GF (24) is an extension of GF (22), but

because of the irreducible polynomials over GF (24), it has

need of too big resources to store the results.

Irreducible polynomials of GF (24):

1+x+x4 ; 1+x+x2+x3+x4 ; 1+x3+x4

Hence to reduce the resource requirement an attempt is made

in this brief. So that AES can have a feasible implementation

in hardware.

The finite field GF (22) has four elements: 0,1, x,x+1.

The primitive polynomial of the field is x2+x+1 [7]. With

these elements all the operations involved in the round

functions can be performed. Addition and multiplication over

GF (22) is somewhat similar to that of calculations over GF

(24). Addition operation resembles Ex-OR operation.

Performing Ex-OR between the coefficients of like powers

gives the result of addition operation.

Usually multiplication is treated as successive addition.

But the result of multiplication requires double memory

resources than the actual data that is being multiplied. So

modulo division is necessary to reduce the memory

consumption.

In the proposed implementation Boolean masking is

applied outside of the round function of AES. AES involves

four key operations in order to encrypt the data. Among those

operations substitution of bytes step is the only non-linear

operation. The remaining three are linear. Moreover Sub-

Bytes operation is treated as heart of the encryption

algorithm. As substitution of byte is very familiar to everyone

and plays an important role in producing cipher text, the

changes made to that portion will

Plain text

Map from GF(28) to

GF (24)

Masking

values

AES block

Inv Map to GF (28)

Cipher text

Key

expansion

block

Fig 2: masked AES over GF (24)

Affine transformation over GF (28)

A(x+m)+b+Am

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070702

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

895

ensure security. In other words strength of the encryption

algorithm depends on strength of Sub-Bytes step.

Besides this applying mask to a non-linear operation

involves different calculations that depends on mask. As the

three operations namely add-round key, shift-rows, mix-

columns are linear in nature they follow the rule given here.

Shift-rows(x⊕m)=Shift-rows(x)⊕shift-rows(m)

But the non-linear operation does not follow the above rule.

For non-linear operations like SubBytes step, masking

follows as below.

s-box(x⊕m) ≠ s-box(x) ⊕ s-box(m)

for this reason mask is applied outside of the s-box. After

applying mask affine transformation is applied to the

resultant equation. Affine transformation is of the form

A(x)+b. Applying this transformation on both sides of

masked output gives following result.





































































1

1

1

0

0

0

1

1

01011110

01100001

11011011

00011011

11100010

00001011

01111111

00000101

rq

The above matrix is derived from the affine transformation

function over GF (24). Where “q=mapAmap-1” and

“r=mapb”.

Actual equation that corresponds to the affine transformation

over GF (24) is

mapAmap-1(x+m)’+mapb+mapAmap-1m’.

where (x+m) is an input to the mask, m’ is a random mask

and b is a constant added in the transformation function.

Figure3 illustrates the implementation of AES with optimized

resource utilization. Here the masked values are mapped to

the field of four elements i.e.GF (22). All the operations of

AES are performed over there.

The expansion block plays an important role in the

encryption algorithm. Normal AES involves key generation

for each round of operation. Here in addition to that block

key expansion is necessary as masking is applied to the actual

data. The result of key expansion block contains the values

produced by the EX-OR operation between actual round key

and random mask. So to extract the secret key intruders need

more computations which in turn changes the power

estimation. At last de-masking has to be done to extract

actual round key.

In order to be compatible the order of affine transformation

and masking operations has been interchanged. After

applying the affine transformation by resolving those

equations the matrices correspond to GF (22) can be obtained.

They are given below.





































































1

0

1

0

0

0

1

1

10000100

01000010

00100001

10010000

01001000

00100100

00110010

00011001

rq

Where “q = mapAmap-1” and “r = mapb”. While de-masking

the encrypted values the same Ex-OR operation is performed.

Transformation back to GF (28) uses matrices corresponds to

the field GF (28).

Plain text

Map to GF (22)

Masking

values

AES block

Inv Map to GF (28)

Cipher text

Key

expansion

block

Fig 3: masked AES over GF (22)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070702

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

896

VII. SYNTHESIS RESULTS

Table 1: synthesis report for the proposed implementation

Device Utilization Summary

Logic Utilization

Over GF (24)

Over GF (22)

Available

Used

Utilization

Available

Used

Utilization

Number of slice

LUTs

46560

21203

45%

46560

15406

33%

Number of slice

registers

93120

376

<1%

93120

298

<1%

Number of fully

used LUT-FF
pairs

21460

119

<1%

21460

71

<1%

Number of

bonded IOBs

240

386

160%

240

212

88%

Number of

BRAM/FIFOs

156

6

3%

156

6

3%

The above tabulated results are obtained by synthesizing

the logic using XILINX ISE 13.2. Hardware chosen for the

synthesis is Vertex-6. By the observation of above result it

is concluded that device utilization is optimized in the

proposed implementation.

CONCLUSION

As area concern is important in VLSI

implementations, to tackle such type of challenges an

attempt is made in this paper. We have succeeded in

achieving the expected result. Significant reduction in area

has been showed in result.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,”

in proc. CRYPTO, 1999, vol. LNCS 1666, pp. 388-397.

[2] F. X. Standaert, E. Peeters, G. Rouvroy, J.-J. Quisqqarter,

“An Overview of Power Analysis Attacks Against FPGAs,”

in proc vol. 94 No.2, February 2006.

[3] Wing Ng, “Counter Measure for Differential Power Analysis

Using Boolean Masking”.

[4] Rijndael, “Advanced Encryption Standard”.

[5] Jovan D. Golic and Chrystophe Tymen, “Multiplicative

Masking and Power analysis of AES”.

[6] Yi Wang and Yajun Ha, “FPGA Based 40.9 Gbits/s Masked

AES With Area Optimization for Storage Area Network,”

vol. 60. No.1. January 2013.

[7] GF (22) from wikipedia.org/wiki/Finite_field.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070702

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

897

