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Abstract: This paper presents a new method for the 

hardware implementation of AES algorithm. As the resource 

utilization plays a vital role in all hardware implementations, 

this paper mainly focused on utilization of minimal resources. It 

has been achieved with the help of Galois field transformation 

and masking. In this brief the operations of AES have been 

mapped from GF (28) to GF (22) as much as possible, so that all 

the operations have been performed over GF (22) and at last the 

results are transformed back to GF (28) from GF (22). In 

addition to this transformation Boolean masking is applied to 

the encription algorithm. 

I. INTRODUCTON 

Physical networks such as Storage Area networks 

(SANs) require hardware implementable AES algorithm to 

ensure security. Since Field Programmable Gate Arrays 

(FPGAs) are attractive options for the hardware 

implementation of encryption algorithms, most of the early 

works have been worked in that way. But it requires large 

FPGA resources. However FPGA boards provide limited 

amount of resources so the design should be such that to be 

fit into the board. 

The normal AES has been broken by Kocher et al. for the 

first time in 1999 with the help of power analysis attacks [1]. 

Also he stressed that the information leaked from microchips 

and computers has correlation with the data handled in 

physical devices. The power analysis attacks habitually 

targets one particular circuit. Hence identifying the target is 

the first step in power analysis. Next is estimating a 

hypothetical model of device’s power consumption [2]. 

Based on that information secret key has been extracted. As 

most of the present FPGAs are made up of CMOS gates, the 

power consumption depends on number of bit transitions in 

the device registers. Moreover the steps involved in 

encryption algorithm are familiar to everyone. 

With time DPA attack has become stronger. So to 

overcome those threats numerous works have been done for 

implementing AES with the ability to defend against the 

attacks mentioned earlier.   

One of the solutions derived for the above problem is to 

apply masking schemes for the round function of AES 

algorithm. The two better masking schemes that suits the 

AES algorithm is 

 

 

 

i. Multiplicative masking 

ii. Boolean masking. 

Realization of multiplicative masking can be done by using 

standard CMOS cells. But it is proven that multiplicative 

masking is vulnerable to DPA attacks. 

 

Whereas the realization of Boolean masking is easier than 

that of multiplicative masking. So in this Boolean masking is 

used. 

II. DEFINITION OF BOOLEAN MASKING 

Boolean masking is defined as follows. In this masking 

scheme simple ex-or operation is performed between the 

random mask and the data [3]. It illustrated as below. 

𝑥′ = 𝑥 ⊕ 𝑟 

Where x is input to the mask, x’ is output of the mask and r 

refers to random mask. 

The masking operations can be explained in detailed as 

below. If  

𝑥3 = 𝑥1⨁𝑥2 

Then the masked output is given as 

𝑥1
′ = 𝑥1⨁𝑟1 

𝑥2
′ = 𝑥2⨁𝑟2 

And  𝑥3
′ = 𝑥1′⨁𝑥2′ 

Then 𝑥3 = 𝑥3
′ ⊕ 𝑟3 

Where 𝑟3 = 𝑟1⨁𝑟2 

Many research works suggested that Boolean masking is 

resistant to DPA attacks. With the application of masking 

schemes, the actual data divides into multiple halves. 

Moreover this masked data will be distributed uniformly as 

compared to actual data. For this reason intruders have to 

estimate compound distributions for each portion of the 

masked data. As a result the computation complexity gets 

increased exponentially.  
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Among the round operations of AES, only the subbytes 

operation is non-linear. Hence the masking has to be applied 

outside of this function. This is illustrated in the below figure 

1. 

 

As substitution of bytes is the only non linear operation of 

AES round function, care has to be taken while applying 

masking schemes [4].  

III. CALCULATIONS ON GALOIS FIELDS 

In general a field is more than just a set of elements. The 

field that contains finite number of elements is usually called 

as Galois field. Following are the operations that are 

performed over the GF (28) [5]. 

Let a(x), b(x) be two fourth order polynomials, the 

addition and multiplication operations are given as 

𝑎(𝑥) = 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 

𝑏(𝑥) = 𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0 

Then the addition is 

𝑎(𝑥) + 𝑏(𝑥) = (𝑎3 ⊕𝑏3)𝑥
3 + (𝑎2 ⊕ 𝑏2)𝑥

2 + (𝑎1 ⊕ 𝑏1)𝑥
+ (𝑎0 ⊕ 𝑏0) 

That means addition operation is nothing but performing Ex-

OR operation between the coefficients of like powers. 

Multiplication operation is defined as 

 𝑐(𝑥) = 𝑎(𝑥) ⋅ 𝑏(𝑥) 

𝑐(𝑥) = 𝑐6𝑥
6 + 𝑐5𝑥

5 + 𝑐4𝑥
4 + 𝑐3𝑥

3 + 𝑐2𝑥
2 + 𝑐1𝑥 + 𝑐0 

Where  𝑐0 = 𝑎0 ⋅ 𝑏0 

 𝑐1 = 𝑎0 ⋅ 𝑏1⨁𝑎1 ⋅ 𝑏0  

 𝑐2 = 𝑎2 ⋅ 𝑏0⨁𝑎1 ⋅ 𝑏1⨁𝑎0 ⋅ 𝑏2 

 𝑐3 = 𝑎3 ⋅ 𝑏0⨁𝑎2 ⋅ 𝑏1⨁𝑎1 ⋅ 𝑏2⨁𝑎0 ⋅ 𝑏3 

 𝑐4 = 𝑎3 ⋅ 𝑏1⨁𝑎2 ⋅ 𝑏2⨁𝑎1 ⋅ 𝑏3 

 𝑐5 = 𝑎3 ⋅ 𝑏2⨁𝑎2 ⋅ 𝑏3 

 𝑐6 = 𝑎3 ⋅ 𝑏3 

The result of multiplication does not have four bits like 

addition operation. So to convert the result modulo operation 

has to be performed. For AES algorithm it is gets done with 

the polynomial𝑥4 + 1. But on GF (28) the above mentioned 

polynomial is an irreducible polynomial. Hence the results of 

those operations need large memory for storage. 

IV. AFFINE TRANSFORMATION 

Since the computations over the field GF (28) require 

large memory resources, here comes the need of 

transformation from GF (28) to GF (22). This can be 

accomplished with the help of affine transformation. 

If the operation to which masking is to be applied is a 

linear operation, it follows the re computation of additive 

constant for each new mask to facilitate the equivalence of 

the data transformations. But the case is different if the 

operation is non-linear [5]. 

V. PREVIOUS WORK 

Yi Wang and Yajun Ha proposed a strategy and they 

proved that storage requirement has been reduced by 20.5%, 

if the operations of AES implementation are performed over 

GF (24) [6]. The block diagram is given in fig 2. 

Masked input Ai⊕X 

SubBytes 

Other round 

functions 

Key from 

key 

expansion 

block 

Encrypted data 

Fig 1: masking outside of subbytes step 
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Affine transformation involved in this implementation is: 

Let the input values to the map function be (z+m) and m. 

the output values be (z+m)’ and m’. Then the input belongs 

to GF (28) and the output belongs to GF (24). 

They keep up the relation 

(z+m+m)’ = map (z+m+m)                            (1) 

General form of affine transformation is (Ax+b), by applying 

this to the above equation 

A (z+m+m)+b = A map-1 (z+m+m)’+b                  (2) 

After mapping from GF (28) to GF (24) 

Map (A (z+m+m)+b)=map(Amap-1(z+m+m)’+b)  (3)  

The Galois field with 256 elements has irreducible 

polynomials which means that all the operations have to be 

performed over those polynomials. The two irreducible 

polynomials of GF (28) are (x4+x+1) and (x2+x+e). one is of 

degree 4 and the other is of degree 2. Poerations performed 

over GF (28) requires large memory resources to store their 

results. So, for that reason transformation has been done from 

GF (28) to GF (24). By resolving the above equations the 

affine transformations over GF (28) can be obtained. And the 

resultant matrices are given as 


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
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
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
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
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




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
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

























1

1

0

0

0

1

1

0

10001111

11000111

11100011

11110001

11111000

01111100

00111110

00011111

bA
 

 

 

VI. PROPOSED AES IMPLEMENTATION OVER GF 

(22) 

As this paper mainly focusing on minimization of 

resource utilization, GF (22) is chosen to perform masked 

AES operations. GF (24) is an extension of GF (22), but 

because of the irreducible polynomials over GF (24), it has 

need of too big resources to store the results. 

Irreducible polynomials of GF (24): 

1+x+x4 ; 1+x+x2+x3+x4 ; 1+x3+x4 

Hence to reduce the resource requirement an attempt is made 

in this brief. So that AES can have a feasible implementation 

in hardware. 

The finite field GF (22) has four elements: 0,1, x,x+1. 

The primitive polynomial of the field is x2+x+1 [7]. With 

these elements all the operations involved in the round 

functions can be performed. Addition and multiplication over 

GF (22) is somewhat similar to that of calculations over GF 

(24). Addition operation resembles Ex-OR operation. 

Performing Ex-OR between the coefficients of like powers 

gives the result of addition operation. 

Usually multiplication is treated as successive addition. 

But the result of multiplication requires double memory 

resources than the actual data that is being multiplied. So 

modulo division is necessary to reduce the memory 

consumption. 

In the proposed implementation Boolean masking is 

applied outside of the round function of AES. AES involves 

four key operations in order to encrypt the data. Among those 

operations substitution of bytes step is the only non-linear 

operation. The remaining three are linear. Moreover Sub-

Bytes operation is treated as heart of the encryption 

algorithm. As substitution of byte is very familiar to everyone 

and plays an important role in producing cipher text, the 

changes made to that portion will 

 

 

 

Plain text 

Map from GF(28) to 

GF (24) 

Masking 

values 

AES block 

Inv Map to GF (28) 

Cipher text 

Key 

expansion 

block 

Fig 2: masked AES over GF (24) 

Affine transformation over GF (28) 

A(x+m)+b+Am 
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ensure security. In other words strength of the encryption 

algorithm depends on strength of Sub-Bytes step. 

Besides this applying mask to a non-linear operation 

involves different calculations that depends on mask. As the 

three operations namely add-round key, shift-rows, mix-

columns are linear in nature they follow the rule given here. 

Shift-rows(x⊕m)=Shift-rows(x)⊕shift-rows(m) 

But the non-linear operation does not follow the above rule. 

For non-linear operations like SubBytes step, masking 

follows as below. 

s-box(x⊕m) ≠ s-box(x) ⊕ s-box(m) 

for this reason mask is applied outside of the s-box. After 

applying mask affine transformation is applied to the 

resultant equation. Affine transformation is of the form 

A(x)+b. Applying this transformation on both sides of 

masked output gives following result. 




















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
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
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

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


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


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
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







1

1

1

0

0

0

1

1

01011110

01100001

11011011

00011011

11100010

00001011

01111111

00000101

rq

 
The above matrix is derived from the affine transformation 

function over GF (24). Where “q=mapAmap-1” and 

“r=mapb”. 

Actual equation that corresponds to the affine transformation 

over GF (24) is 

mapAmap-1(x+m)’+mapb+mapAmap-1m’. 

where (x+m) is an input to the mask, m’ is a random mask 

and b is a constant added in the transformation function. 

Figure3 illustrates the implementation of AES with optimized 

resource utilization. Here the masked values are mapped to 

the field of four elements i.e.GF (22). All the operations of 

AES are performed over there. 

The expansion block plays an important role in the 

encryption algorithm. Normal AES involves key generation 

for each round of operation. Here in addition to that block 

key expansion is necessary as masking is applied to the actual 

data. The result of key expansion block contains the values 

produced by the EX-OR operation between actual round key 

and random mask. So to extract the secret key intruders need 

more computations which in turn changes the power 

estimation. At last de-masking has to be done to extract 

actual round key.  

  

In order to be compatible the order of affine transformation 

and  masking operations has been interchanged. After 

applying the affine transformation by resolving those 

equations the matrices correspond to GF (22) can be obtained. 

They are given below. 


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








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

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
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










1

0

1

0

0

0

1

1

10000100

01000010

00100001

10010000

01001000

00100100

00110010

00011001

rq
 

Where “q = mapAmap-1” and “r = mapb”. While de-masking 

the encrypted values the same Ex-OR operation is performed. 

Transformation back to GF (28) uses matrices corresponds to 

the field GF (28). 
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Fig 3: masked AES over GF (22) 
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VII. SYNTHESIS RESULTS 

Table 1: synthesis report for the proposed implementation 

 

Device Utilization Summary 

 
 

Logic Utilization 

 
Over GF (24) 

 
Over GF (22) 

 

Available 

 

Used  

 

Utilization  

 

Available 

 

Used 

 

Utilization 

Number of slice 

LUTs 

 

46560 

 

21203 

 

45% 

 

46560 

 

15406 

 

33% 

Number of slice 

registers 

 

93120 

 

376 

 

<1% 

 

93120 

 

298 

 

<1% 

Number of fully 

used LUT-FF 
pairs 

 

21460 

 

119 

 

<1% 

 

21460 

 

71 

 

<1% 

Number of 

bonded IOBs 

 

240 

 

386 

 

160% 

 

240 

 

212 

 

88% 

Number of 

BRAM/FIFOs 

 

156 

 

6 

 

3% 

 

156 

 

6 

 

3% 

 

The above tabulated results are obtained by synthesizing 

the logic using XILINX ISE 13.2. Hardware chosen for the 

synthesis is Vertex-6. By the observation of above result it 

is concluded that device utilization is optimized in the 

proposed implementation.  

CONCLUSION 

As area concern is important in VLSI 

implementations, to tackle such type of challenges an 

attempt is made in this paper. We have succeeded in 

achieving the expected result. Significant reduction in area 

has been showed in result.  
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