
Design of IEEE-754 Double Precision Floating

Point Unit Using Verilog

Swathi. G. R
ECE Dept., SJCIT,

Chickballapur, Karnataka, India

Veena. R
Assistant Professor, ECE dept., SJCIT,

 Chickballapur, Karnataka, India

Abstract-Floating point addition, subtraction and multiplication

are widely used in large set of scientific and signal processing

computation. Thus an IEEE-754 double precision floating point

unit (FPU) is designed in this paper. The proposed design

involves logarithmic approach for computing floating point

numerical operations. It performs all the four basic arithmetic

operations that also handle overflow, underflow, rounding and

various exception conditions. The design is coded in Verilog

hardware description language and simulated in Questasim.

Keywords-IEEE 754, Double precision, Floating point unit

(FPU), logarithmic approach.

I.

INTRODUCTION

Real valued numbers are represented as floating point

(FLP) numbers, which has its own standardizations and

representations. Hence performing computations on these

numbers are quite complicated and different from performing

computations on ordinary numbers. The complexities in the

computation are reduced by reducing the strength of

operations, which can be done by having different number

systems (as per Prahami's) [7] like logarithmic number

systems (LNS).An IEEE 754 double precision floating point

number format has been adopted in this paper. Figure 1

shows the IEEE-754 double precision binary format

representation. Sign(S) is represented with one bit; exponent

(E) and fraction (M or Mantissa) are represented with eleven

and fifty two bits respectively. For

a number is said to be a

normalized number, it must consist of ‘1’ in the MSB of the

significand and exponent is greater than zero and smaller than

1023.

Fig 1: IEEE-754 Double Precision Floating Point Number Format

The real numbers are represented by equations (1) and (2).

Z = −1s ∗ 2(E−bias) ∗ (1. M)

(1)

Value = −1sign

bit ∗ 2(Exponent −1023) ∗ (1. Mantissa)

(2)

 II BACKGROUND

A.

Related Works

Lots of works have been proposed for FPU models, and

all suggests some improvements in certain levels at various

stages. An island-style with embedded FPU [11] is proposed

by Beauchamp et al, and it gives a delay improvement than

standard implementation for floating point applications.

A coarse grained FPUs where suggested by ho et al., and

they presents a Hybrid architecture, where word blocks were

used for computing simple operations. This also suggests

improvement in delay as whole complex operations were

moved to the coarse grained to reduce routing delays.

[13] Evan suggests a multiplier for performing single

precision or either a dual precision floating point numbers,

[14] Akkas further tunes Evan's multiplier and presents a

quad precision multiplication .

In all these works done suggested the delay [11], [12]

improvements and area reductions [13] -

[15]. In our paper,

we suggest an efficient model for performing the floating

point operations by reducing the operation complexities by

adopting the log conversion [2] of Sagunath Paul et al.

B.

Conventional Floating Point Computations

Conventional floating point computation uses the similar

computation architectures of integers with slight revision in

computation logics. The representation of the floating

point

numbers itself got three individual parts; the computation has

to be done on mantissa with respect to its sign and exponent

parts. for example, the floating point adders uses any of the

adder structures like carry look ahead adder or ripple carry

adder or carry save adder,

etc., to add the mantissa terms, but

the addition have to be done in accordance with the sign and

exponent bits. Let X1(sl,el,ml) and X2(s2,e2,m2) be two

floating point numerals. Then X3(s3,e3,m3) be the addition

result of X1 and X2, the computation is done basically in

three steps as expressed in (3), (4) and (5).

𝑠3 = 𝑠1⨀𝑠2

(3)

𝑒3 = 𝑒1 − 𝑒2 (4)

𝑚3 = {𝑚1}𝑑

{⨀}𝑠3

{𝑚2}𝑑 (5)

The sign bit chooses the operations whereas the exponent

decides the operands or bits in mantissas to which be added.

This shows the whole addition process apart from adding also

includes some extra logics, which increases the complexity.

1136

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041272

International Journal of Engineering Research & Technology (IJERT)

 This will be worse in the case of multiplication in which

the random multiplication patterns have to be done on the

mantissa parts with respect to their exponent parts. Let X4(s4,

e4, m4) be the output of product of floating point numbers X1

and X2, then the computation done as expressed in (6), (7)

and (8).

𝑠4 = 𝑠1⨀𝑠2 (6)

𝑒4 = 𝑒1 + 𝑠2 (7)

𝑚4 = 𝑚1 𝑒1⨀ 𝑚2 𝑒2 (8)

Fig 2: Conventional Floating Point Multiplier

C. LNS Representation

In contrast with FLP numbers, LNS includes neither an

integer exponent nor separate linear mantissa. It is much

simpler because it uses a single scaled exponent and can be

represented by:

(−1)𝑠 × 2𝑚 .𝑓 (9)

 where s, m and f indicate sign, integer and fractional bits

respectively. Although there is no commonly accepted

standard for the LNS format, the most widely used format is

shown in Figure 3.

Fig 3: Basic Components of Logarithmic Number Format

 Typically, base-2 logarithms are used in LNS

computations though in principle any base can be used. When

the real numbers represented are signed, LNS has a maximum

and minimum range between 2^-128 to ≈ 2^+128, ≈ 2.9E –

39 to 3.4E + 38. A special arrangement of bits is used to

indicate the real number zero.

III.OUR APPROACH

 A combination of two different data formats, including

elements from both LNS and FLP systems, has been adopted

in this design. These allow the multiply and divide operations

to be rapidly computed using the LNS format, while addition

and subtraction are processed efficiently in FLP

representation. The concept of this hybrid number system

design is shown below in figure 4.

Fig 4: Concept of Hybrid Number System

 An optimized architecture for Floating point unit is

shown in Figure 5. As the computation of floating point

numerals are very complicated, it demands a separate

unit for its processing and this leads to the design of

FPUs. By exploring the existing FPUs the phenomenon of

arithmetic computations are still the same as the ordinary

ALU operations, it just acts like an additional prop up

for normal ALUs.

Fig 5: Proposed Model

A. Addition and Subtraction

Addition or subtraction computation phenomenon is

done by adding or subtracting the mantissa bits according to

the exponent and sign bits, and the steps involved in the

computing are described as follows.

 The difference of the two exponents is calculated. If

any, perform the mantissa shift and set the larger

exponent as the tentative exponent of the result.

FLP input

FLP

ADD/SUB
FLP to LNS

LNS

MUL/DIV

LNS to FLP

MUX

FLP output

Comparator

Adder

Multiplier

Bit

De-

separat

or

Bit

Separat

or

X

1

X

2

X

3

1137

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041272

International Journal of Engineering Research & Technology (IJERT)

 Shift the mantissa of the smaller exponent to right

by the bits of difference in the exponents.

 According the sign bit perform addition (if equal) or

subtraction (if unequal) on mantissas, to get the

tentative mantissa for result.

 Check for exception. If yes, set the signal exception.

 If no, normalize and round off the mantissa result. If

there is an overflow due to rounding, shift right and

increment exponent by 1 bit.

 Have the highest of sign bits as the sign bit of the

result.

B. Multiplication and Division

Multiplication or division computation procedure

involved in this design simplifies the overall data-path of the

FPU, as there is mere computation with mapping only

involved and this simplifies the overall stages involved in

computation. The stages are described as follows.

 Map the mantissa of the input data to the

corresponding logarithmic number in the LUT. Its

value is given by (−1)𝑠 × 2𝑚 .𝑓 , which provides a

similar representation range to FLP numbers.

 Add/Subtract the logarithms, if any overflow shift

to the right, and map with antilogarithm LUT to

obtain the mantissa of the result.

 The exponent of the result is obtained by adding the

exponent bits.

 The sign bit of the result is obtained by the xor of

both sign bits.

IV. RESULTS AND DISCUSSIONS

 This section shows the simulated results of the proposed

design coded in Verilog. The proposed design is verified

using the Questasim simulator version 6.4c.Snapshots of the

addition, subtraction, multiplication and division are shown

below.

Fig 6: Snapshot of Floating point adder adding two numbers

Fig 7: Snapshot of Floating point subtractor subtracting two numbers

Fig 8: Snapshot of Floating point multiplier multiplying two numbers

Fig 9: Snapshot of Floating point divider dividing two numbers

V. CONCLUSION

 This paper presents an IEEE-754 double precision

floating point unit capable of performing double precision

addition, subtraction, multiplication and division.The use of

logarithmic approach for multiplication and division reduces

the complexity of computation and simplifies the overall

data-path of the FPU. The main requirement for this model

is the LUTs and its memory occupancies lead to the

latency in the model.

1138

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041272

International Journal of Engineering Research & Technology (IJERT)

REFERENCES

 [1] ChiWai Yu,Alastair M. Smith, Wayne Luk, Philip H.W. Leong and

Steven J.E.Wilton, "optimizing floating point units in Hybrid FPGAs,.

IEEE trans. on Very Large Scale Integr. (VLSI) systems, vol. 20,

no.7,pp 45- 65, July 20 12.
[2] Suganth Paul, Nikhil Jayakumar, and Sunil P. Khatri," A fast hardware

approach for approximate, Efficient logarithm and antilogarithm

computations", IEEE trans. on very large scale integr.(VLSI) systems,
vol. 17, no. 2, February 2009, pp. 269-277.

[3] Yee Jern Chong and Sri Parameswaran," configurable multimode

embedded floating-point units for FPGAs ", IEEE trans. on very large
scale integr.(VLSI) systems, vol. 19, no. II,pp.2033-44, Nov 20 II.

[4] G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S. Gangadharpalli, and V.

Sridhar, "A high-performance and energy efficient architecture for
floating-point based LU decomposition on FPGAs," in Proc. I II"

Reconfigurable Arch.Workshop (RAW), Santa Fe, NM, Apr. 2004,pp.

149-153
[5] M. de Lorimer and A DeHon," Floating point sparse matrix-vector

multiply for FPGAs,"in Proc. ACM Int. Symp. Field Program.Gate

Arrays, Monterey, CA, Feb. 2005, pp. 75-85.
[6] K. H. Abed and R. E. Siferd,"CMOS VLSI implementation of a low

power logarithmic converter, " IEEE Trans. Computers, vol. 52, no. II,

pp. 1421-1433, Nov. 2003.
[7] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std

754, 1985.
[8] Y.J.Chong and S. Parameswaran, "Flexible multi-mode embedded

floating-point unit for field programmable gate arrays," in Proc.

FPGA, 2009, pp. 171-180.
[9] S. S. Demirsoy and M. Langhammer, "Cholesky decomposition using

fused datapath synthesis," in Proc. FPGA, 2009, pp. 241-244.

[10] M. Langhammer and T. VanCourt, "FPGA floating point datapath
compiler," in Proc. FCCM, 2009, pp. 259-262. [II] M. J. Beauchamp,

S. Hauck, and K. S. Hemmert, "Embedded floating point units in

FPGAs," in Proc. IEEE Symp. Field Program. Gate Arrays (FPGA),
2006, pp. 12-20.

[12] C. H. Ho, C. W. Yu, P. H. W. Leong, W. Luk, and S. 1. E. Wilton,

"Domain-specific hybrid FPGA: Architecture and floating point
applications," in Proc. Int. Con! Field Program. Logic Appl. (FPL).

2007.

[13] G. Even, S. M. Mueller, and P.-M. Seidel, "A dual precision IEEE
floating-point multiplier," Integr.'. VLSI J, voL 29, no. 2, pp. 167-180,

2000

[14] A Ye and J. Rose, "Using Bus-Based Connections to Improve Field
programmable Gate Array Density for Implementation Datapath

Circuits", IEEE Trans. VLSI, vol. 14, no. 5, pp. 462-473, 2006

[15] Xilinx, Inc., San Jose, CA, "Virtex-ll platform
FPGAs:Completedatasheet,"2005.[Online].Available:http://direct.xilinx

.combvdocs/publications/ds031.pdf.

1139

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041272

International Journal of Engineering Research & Technology (IJERT)

