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Abstract-Floating point addition, subtraction and multiplication 

are widely used in large set of scientific and signal processing 

computation. Thus an IEEE-754 double precision floating point 

unit (FPU) is designed in this paper. The proposed design 

involves logarithmic approach for computing floating point 

numerical operations. It performs all the four basic arithmetic 

operations that also handle overflow, underflow, rounding and 

various exception conditions. The design is coded in Verilog 

hardware description language and simulated in Questasim.
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I.
  

INTRODUCTION
 

Real valued numbers are represented as floating point 

(FLP) numbers, which has its own standardizations and 

representations. Hence performing computations on these 

numbers are quite complicated and different from performing 

computations on ordinary numbers. The complexities in the 

computation are reduced by reducing the strength of 

operations, which can be done by having different number 

systems (as per Prahami's) [7] like logarithmic number 

systems (LNS).An IEEE 754 double precision floating point 

number format has been adopted in this paper. Figure 1 

shows the IEEE-754 double precision binary format 

representation. Sign(S) is represented with one bit; exponent 

(E) and fraction (M or Mantissa) are represented with eleven 

and fifty two bits respectively. For
 
a number is said to be a 

normalized number, it must consist of ‘1’ in the MSB of the 

significand and exponent is greater than zero and smaller than 

1023.
  

 

Fig 1: IEEE-754 Double Precision Floating Point Number Format
 

The real numbers are represented by equations (1) and (2).
 

Z =  −1s ∗ 2(E−bias ) ∗ (1. M)                                                  
 
(1)

 

 

Value =  −1sign
 
bit  ∗ 2(Exponent −1023 ) ∗ (1. Mantissa)

 
(2)    

 

 

 

 

   II BACKGROUND
 

    
 

A.
 

Related Works
  

Lots of works have been proposed for FPU models, and 

all suggests some improvements in certain levels at various 

stages. An island-style with embedded FPU [11] is proposed 

by Beauchamp et al, and it gives a delay improvement than 

standard implementation for floating point applications.  
 

A coarse grained FPUs where suggested by ho et al., and 

they presents a Hybrid architecture, where word blocks were 

used for computing simple operations. This also suggests 

improvement in delay as whole complex operations were 

moved to the coarse grained to reduce routing delays.
 

[13] Evan suggests a multiplier for performing single 

precision or either a dual precision floating point numbers, 

[14] Akkas further tunes Evan's multiplier and presents a 

quad precision multiplication .
 

  
In all these works done suggested the delay [11], [12] 

improvements and area reductions [13] -
 
[15]. In our paper, 

we suggest an efficient model for performing the floating 

point operations by reducing the operation complexities by 

adopting the log conversion [2] of Sagunath Paul et al. 
 

 

B.
 

Conventional Floating Point Computations 
 

 

Conventional floating point computation uses the similar 

computation architectures of integers with slight revision in 

computation logics. The representation of the floating
 
point

 

numbers itself got three individual parts; the computation has 

to be done on mantissa with respect to its sign and exponent 

parts. for example, the floating point adders uses any of the 

adder structures like carry look ahead adder or ripple carry 

adder or carry save adder,
 
etc., to add the mantissa terms, but 

the addition have to be done in accordance with the sign and 

exponent bits. Let X1(sl,el,ml) and X2(s2,e2,m2) be two 

floating point numerals. Then X3(s3,e3,m3) be the addition 

result of X1 and X2, the computation is done basically in 

three steps as expressed in (3), (4) and (5).
 

 

𝑠3 = 𝑠1⨀𝑠2                                    
 
(3)

 

𝑒3 = 𝑒1 − 𝑒2                                   (4)
 

𝑚3 = {𝑚1}𝑑
 
{⨀}𝑠3

 
{𝑚2}𝑑               (5)

 

 

 
The sign bit chooses the operations whereas the exponent 

decides the operands or bits in mantissas to which be added. 

This shows the whole addition process apart from adding also 

includes some extra logics, which increases the complexity. 
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 This will be worse in the case of multiplication in which 

the random multiplication patterns have to be done on the 

mantissa parts with respect to their exponent parts. Let X4(s4, 

e4, m4) be the output of product of floating point numbers X1 

and X2, then the computation done as expressed in (6), (7) 

and (8). 

 

𝑠4 = 𝑠1⨀𝑠2                                       (6) 

𝑒4 = 𝑒1 + 𝑠2                                      (7) 

𝑚4 =  𝑚1 𝑒1⨀ 𝑚2 𝑒2                     (8) 

 

 
Fig 2: Conventional Floating Point Multiplier 

 

C. LNS Representation 

 

In contrast with FLP numbers, LNS includes neither an 

integer exponent nor separate linear mantissa. It is much 

simpler because it uses a single scaled exponent and can be 

represented by:  

 

(−1)𝑠 × 2𝑚 .𝑓                                    (9) 

 

 where s, m and f indicate sign, integer and fractional bits 

respectively. Although there is no commonly accepted 

standard for the LNS format, the most widely used format is 

shown in Figure 3. 

 

 
 

Fig 3: Basic Components of Logarithmic Number Format 

 

 Typically, base-2 logarithms are used in LNS 

computations though in principle any base can be used. When 

the real numbers represented are signed, LNS has a maximum 

and minimum range between 2^-128 to ≈ 2^+128, ≈ 2.9E – 

39 to 3.4E + 38. A special arrangement of bits is used to 

indicate the real number zero. 

 

 

III.OUR APPROACH  

 

 A combination of two different data formats, including 

elements from both LNS and FLP systems, has been adopted 

in this design. These allow the multiply and divide operations 

to be rapidly computed using the LNS format, while addition 

and subtraction are processed efficiently in FLP 

representation. The concept of this hybrid number system 

design is shown below in figure 4. 

 

 

Fig 4: Concept of Hybrid Number System 

 

 An optimized architecture for Floating point unit is 

shown in Figure 5. As the  computation of  floating point 

numerals are  very  complicated,  it  demands  a  separate  

unit  for  its processing  and  this  leads  to  the  design  of  

FPUs.  By  exploring the  existing FPUs the  phenomenon  of  

arithmetic  computations are  still  the  same  as  the  ordinary  

ALU  operations,  it just  acts like  an  additional  prop  up  

for  normal ALUs. 

 
 

Fig 5: Proposed Model 

 

A. Addition and Subtraction  

 

Addition or subtraction computation phenomenon is 

done by adding or subtracting the mantissa bits according to 

the exponent and sign bits, and the steps involved in the 

computing are described as follows. 

 The difference of the two exponents is calculated. If 

any, perform the mantissa shift and set the larger 

exponent as the tentative exponent of the result.  

FLP input 

FLP 
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 Shift the mantissa of the smaller exponent to right 

by the bits of difference in the exponents.  

 According the sign bit perform addition (if equal) or 

subtraction (if unequal) on mantissas, to get the 

tentative mantissa for result.  

 Check for exception. If yes, set the signal exception.  

 If no, normalize and round off the mantissa result. If 

there is an overflow due to rounding, shift right and 

increment exponent by 1 bit.  

 Have the highest of sign bits as the sign bit of the 

result. 

 

B. Multiplication and Division  

 

Multiplication or division computation procedure 

involved in this design simplifies the overall data-path of the 

FPU, as there is mere computation with mapping only 

involved and this simplifies the overall stages involved in 

computation. The stages are described as follows. 

 Map the mantissa of the input data to the 

corresponding logarithmic number in the LUT. Its 

value is given by (−1)𝑠 × 2𝑚 .𝑓 , which provides a 

similar representation range to FLP numbers. 

 Add/Subtract the logarithms, if any overflow shift 

to the right, and map with antilogarithm LUT to 

obtain the mantissa of the result.  

 The exponent of the result is obtained by adding the 

exponent bits.  

 The sign bit of the result is obtained by the xor of 

both sign bits. 

 

IV. RESULTS AND DISCUSSIONS 

 

 This section shows the simulated results of the proposed 

design coded in Verilog. The proposed design is verified 

using the Questasim simulator version 6.4c.Snapshots of the 

addition, subtraction, multiplication and division are shown 

below. 

 

 

 

Fig 6: Snapshot of Floating point adder adding two numbers 

 

 

 
 

Fig 7: Snapshot of Floating point subtractor subtracting two numbers 

 

 

 
 

Fig 8: Snapshot of Floating point multiplier multiplying two numbers 

 

 
 

Fig 9: Snapshot of Floating point divider dividing two numbers 

 

V. CONCLUSION 

 

 This paper presents an IEEE-754 double precision 

floating point unit capable of performing double precision 

addition, subtraction, multiplication and division.The use of 

logarithmic approach for multiplication and division reduces 

the complexity of computation and simplifies the overall 

data-path of the FPU. The main requirement  for  this  model 

is  the  LUTs  and  its memory  occupancies  lead  to  the  

latency  in  the  model. 
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