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Abstract—In this paper, a new error-compensation 

network for fixed-width multiplier is proposed. The error 

compensation block is composed of dual trees which are 

optimally chosen in order to minimize either the mean-

square error or the maximum absolute error. The new 

technique significantly improves error performance with 

respect to previous approaches. Simulation results show 

that new fixed-width multipliers exhibit significant 

improvements both in mean square error and in power 

dissipation with respect to previous solutions. As 

compared with the state-of-the-art , the proposed fixed-

width multiplier performs not only with lower 

compensation error but also with lower hardware 

complexity, especially as multiplier input bits increases. 

  

Index Terms—Digital integrated circuits, Fixed-width 

multipliers, hardware-efficient, low-error. 

 
I. INTRODUCTION 

 

In many high-speed digital signal processing 

(DSP) and multimedia applications, the multiplier 

plays a very important role because it dominates the 

chip power consumption and operation speed. In DSP 

applications, in order to avoid infinite growth of 

multiplication bit width, we usually have to reduce 

the number of multiplication products. Cutting off n-

bit less significant bit (LSB) output can construct a 

fixed-width multiplier with n-bit input and n-bit 

output. However, truncating the LSB part leads to a 

large number of truncation errors.  

Many truncation error compensation techniques 

[1]–[10] have been presented to design an error 

compensation circuit with less truncation error and 

less hardware overhead. The compensation methods 

can be divided into two categories: compensation 

with constant correction value [1]–[3] and 

compensation with variable correction value [4]–

[10]. The circuit complexity to compensate with 

constant corrected value can be simpler than that of 

variable correction value; however, the variable 

correction approaches usually can be more precise. 

Many techniques have been proposed which 

exploit the “fixed-width” property to reduce 

hardware complexity with respect to rounded full-

width multiplier [12], [15]–[18]. In order to simplify 

the review and the comparison of these techniques, 

let us subdivide the partial products in the three 

subsets most significant part (MSP), input correction 

vector (IC), and less significant part (LSP) shown in 

Fig. 1. 

The approximation error of fixed bias correction 

(13) is investigated in [16] by Lim. It is shown that 

the error rapidly increases with multiplier size. The 

error can be reduced by retaining more partial 

products (for instance the IC partial products) before 

adding the fixed bias K. Obviously, this results in a 

tradeoff between precision and hardware complexity. 

In [15], Kidambi et al. simplify the multiplier by 

deleting both IC and LSP partial products. A pre-

computed constant is added to the final output in 

order to compensate for the introduced error. The 

fixed-width multiplication is hence approximated as 

follows in (1): 

 

 
                                                                        (1)   

                                                          

This technique provides a hardware complexity 

about halved with respect to a full multiplier. 

However, the introduced error is high, reducing 

practical applications. 

A multiplier calculates P=X.Y as weighted sum 

of partial products xiyj 

 

 

              (2) 
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 Fig.1. Full multiplier partial product matrix 

 

 

II.FIXED-WIDTH MULTIPLIERS ERRORS 

A. Error Metric 

 

The accuracy of a fixed-width multiplier can be 

evaluated considering the introduced error with 

respect to the output of the -bit complete multiplier:  

 

£=P-Pt                                              (4) 

 

where is the output of the complete multiplier given 

by (2), and is the output of the fixed-width multiplier. 

As error metric we consider either the normalized 

maximum absolute error (£max) or the normalized 

mean-square error (£ms) defined as 

 

£max =max (│£│)/LSB                      (5) 

 

£ms =E {£
2
}/LSB

2                              
(6)

 

 

Where E{} is the average operator, while LSB=2
-n

 is 

the weight of the less significant bit at the output of 

the multiplier. Another parameter useful to 

characterize fixed-width multipliers accuracy is the 

normalized mean error (£m), given by 

 

£m =E {£}/LSB
2                                

(7) 
 

An improved fixed-width multiplication 

algorithm, named partial product “conditional 

correction”, is also proposed in [16].This algorithm, 

basically, exploits the correlation between the IC 

partial products and the sum of LSP partial products. 

Neither algorithm hardware implementation nor 

circuit performance analysis is given in [16]. 

The conditional correction algorithm is further 

developed in [17] by Jou et al.. In the Jou 

architecture, the IC partial products are summed to 

compute an intermediate quantity SIC  

 

SIC = x1.yn+x2.yn-1+…+xn.y1               (3) 

                                                                 

The sum SIC   is then used to calculate a 

correction factor that estimates the sum of dropped 

partial products. 

       In this paper, a new approach to design high 

performance unsigned fixed-width multipliers is 

proposed. The multiplier is based on multiple-input 

error-compensation architecture, like [12], [18]. A 

new error-compensation function f ( ) is developed, 

that can be optimized in order to minimize either the 

maximum absolute error or the mean-square error. 

Our error-compensation function, moreover, can be 

implemented by using only a few gates, with tree 

architecture. As a consequence, proposed approach is 

ideally suited for fast tree-based multipliers [14]. 

The Results for a circuit implementation in 0.35- 

m technology and a comprehensive comparison with 

previously proposed techniques are also reported in 

the paper.  

 

B. Errors in Rounded Full-Width Multipliers 

      

     The simplest way to obtain a fixed-width 

multiplier is through a rounded, full-width multiplier. 

Rounding introduces a quantization error, that is well 

known to provide £max =1/2 and £ms=1/12 [16]. These 

values are a lower bound for the errors achievable 

with any fixed-width multiplier, since full-width 

multiplier rounding is the most accurate fixed-width 

technique. 

 

C. Error Bounds for Fixed-Width Multipliers with 

Multiple-Input Error Compensation 

          

        Let us consider a fixed-width multiplier design 

is given by  

 

         £=P-Pt =s(x1,….,xn:y1,….yn)-f(IC)        (8)                                                                                      

                                         

where s(x1,….,xn:y1,….yn)=s(x;y)  is the sum  of   the 

IC and LSP partial products The accuracy of fixed-

width multipliers with multiple-input error 

compensation depends on the choice of error-

compensation function. The electrical performance 

depends on implementation of error-compensation 

function. 
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TABLE I 

 

 PERFORMANCES OF FIXED-WIDTH MULTIPLIERS BY USING DUAL TREE ERROR COMPENSATION 

     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.2. Block diagram for fixed width multiplier 

 

The block diagram show that once multiplication 

is completed .The partial product is divided into most 

significant part, input correction and least significant 

part. The least significant part is truncated from most 

significant part and input correction vector. The 

number of partial product items with higher weight 

will increase with the number of bits, while the 

number of partial product items with lower weight is 

fixed.Table1 describe the performances of fixed-

width multipliers by using dual tree error 

compensation. 

 

D. Dual Tree Architecture 

 

       The architecture of proposed error-compensation 

block is shown in Fig. 3. To take into account 

different weights of IC partial products, we divide the 

 

 

 

input correction vector in two disjoined sets and use 

two addition trees to compute the error 

compensation. 

       The optimal IC subdivision (between standard 

and modified summation trees) and the optimal 

mixing block configuration have been obtained 

through exhaustive search. We realized two 

optimizations. In the first one, we assumed as a goal 

function the absolute error (£max), whereas the second 

optimization was carried out to minimize the mean-

square error (£ms). This second addition tree uses 

modified half-adders (mHAs) to take into account the 

contribution of partial products with higher weights. 

        The dual-tree architecture has been obtained 

heuristically, after observing that the error 

compensation function can be approximated as a 

weighted sum of input correction vector partial 

products. In order to introduce our approach with the 

help of an example, let us consider a 6-bit fixed-

 

N 

 

Architecture 

Error (%) Area 10
3 
um

2
 Power um/MHZ 

12 Rounded 9.098 68.60 112.89 

12 Existing fixed width 3.04 45.90 70.90 

12 Proposed fixed width 2.11 33.94 55.89 

16 Rounded 16.181 120.28 198.64 

16 Existing fixed width 2.30 80.80 112.01 

16 Proposed fixed width 2.0 59.86 99.90 
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width multiplier, with optimized mean-square error. 

we can eliminate the modified tree altogether, by 

sending the partial products originally assigned to the 

modified tree directly to the carry-save adder, with a 

weight LSB. 

      For this type architecture, it can be demonstrated 

that the final subtraction and the mixing block 

correspond to the inclusion of a NOR and an AND 

gate as shown in Fig. 4. 

     The best accuracy is obtained by designing the 

error-compensation function according to either (16) 

or (21). This solution, however, calls for a lookup 

table to implement either the or functions. Lookup 

table complexity grows exponentially with, rapidly 

becoming an impractical solution. 

 

        

II. CIRCUITS PERFORMANCES 

        

       We implemented rounded full-width multipliers, 

Jou [17], Curticapean [12], and the optimize dual-tree 

fixed width multipliers proposed in this paper using a 

three metal 0.35- m technology with 3.3-V supply 

voltage. In order to have a realistic and accurate 

indication of the architectures performances, we 

implemented the carry-save tree of all multipliers 

using the three-dimensional reduction method (TDM) 

proposed in [19]. TDM is a state of the art technique 

to add elements of partial products matrix with a tree 

based carry-save approach, compensating for 

different delays in partial products generation, and 

exploiting delays asymmetries in full-adders to 

improve overall timing. Silicon area of developed 

dual-tree multipliers is slightly reduced with respect  

 

Fig.3. Architecture of dual-tree error compensation block 

 

 

 

 

 

Fig.4. Optimized implementation of dual-tree error-compensation blocks 

 

 

758

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70353



to Jou and Curicapean solutions, with an area 

reduction of about 6% for n=16. Obviously, the 

advantage with respect to complete rounded 

multiplier is much more evident, with area reduction 

of about 50%. 

        According to table 1, due to the reduced 

glitching in the partial products generation, the 

proposed circuits exhibit a lower power dissipation 

with respect to Jou and Curticapean solutions for n>4 

. For instance, power saving is about 11% for n equal 

to 16. Power dissipation is almost halved with respect 

to the complete rounded multiplier.  

The slope of transistor count increasing as 

the fixed-width multiplier input number increases is 

gentler in our proposed design. Though in our 

proposed design we must spend more transistor count 

in the 8-bit fixed-width multiplier, we spend less 

transistor count in the cases of input bit number are 

larger than eight. The superiority in area-efficiency in 

our design is more obvious as input number 

increases. 

 

 

IV SIMULATION RESULT AND DISCUSSION 

 

          Based on the concept in the previous section, 

we have designed a FWM for 16-bit with reduced 

error and low power. The FWM was analyzed using 

Modelsim simulator at the system level.       

Modelsim is a simulation and debugging 

environment created by Mentor Graphics. Modelsim 

allows you to check the syntax and verify the 

functionality of VHDL programs. 

Modelsim uses libraries in two ways:  

1) As a local working library that contains the 

compiled version of your design;  

2) As are source library. A common example of using 

both a working library and a resource library is one 

where your gate-level design and test bench are 

compiled into the working library and the design 

references gate-level models in a separate resource 

library. 

 

 

 

 
 

 

 

Fig.2. Simulated Result  
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V CONCLUSION 

         

         In this paper, a low-error and area-efficient 

fixed-width multiplier by using the dual group minor 

input correction vector is presented. As compared 

with the state-of-the-art design in [8], the proposed 

fixed-width multiplier improves accuracy, silicon 

area, timing performances and power dissipation. 

Simulation results for a 0.35-µm technology show a 

decrease of the propagation delay up to 20%, with 

more than 10% power dissipation reduction. 
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