
Design of Low Power Approximate Radix-8 Booth

Multiplier

K. Sindhuja C. Thiruvenkatesan

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering

SSN College of Engineering SSN College of Engineering

Chennai, India Chennai, India

Abstract---Booth multiplier has been used for high speed

signed multiplication. This multiplication is achieved through

encoding and reducing the number of partial products

generation stage (PPG). The partial products are easily

produced by using Radix-4 (Modified Booth) algorithm in the

Booth multiplier. Radix-8 algorithm also produces partial

products but is slow due to the generation of odd multiples of

the multiplicand. This problem could be overcome by some of

the application of approximate designs. An approximate 2-bit

adder is designed for calculating the sum of 1× and 2× of a

binary numbers. This approximate adder requires small area,

low power and short critical path delay. Two signed 16 bit and

32 bit approximate radix-8 Booth multipliers are designed using

this approximate recoding adder with and without truncation of

least significant bit in the partial products. This proposed

approximate multiplier will be faster and power efficient than

accurate Booth multiplier. This algorithm is implemented using

Verilog coding and the synthesis is done with Xilinx software.

Keywords---Radix-8; approximate adder; Partial product

generation (PPG); approximate multiplier; FSM

I. INTRODUCTION

Multipliers were introduced to perform multiplication

operation of the arithmetic circuits by using add and shift

operation. Generally, a system performance is determined by

the performance of the multiplier because the multiplier is

considered as the slowest element in the whole system and

also it is area consuming. Multiplication is frequently

required in digital signal processing. Parallel multipliers

provide a high-speed method for multiplication, but require

large area for VLSI implementations. Many DSP applications

are based on Add-Multiply operations which were designed

by adding the bits and giving its output as an input to the

multiplier. This increases the area and delay of the circuit. In

order to reduce the power consumption of multiplier, the low

power Booth recoding methodology is implemented by

recoding technique. This Booth decoder will increase number

of zeros in multiplicand. Modified Booth algorithm has made

multiplication easier. It consists of recoding table which has

been used to minimize the partial products of multiplier.

An adder and the multiplier operator of the unit combined

to form a single add-multiply unit. In ALU, only

add/subtract/shift operations are possible. Multiplication

involves two basic operations. They are generation of partial

products and their accumulation. There are two ways for

speeding up this multiplication which are reducing the

number of partial products and accelerating the accumulation.

For consecutive 0’s and 1’s in Booth's algorithm only few

partial products are generated. Booth multiplier performs

both signed and unsigned operation.

II. PROPOSED SYSTEM

A. Approximate multiplier

Approximate multipliers are considered by using the

speculative adders to compute the sum of partial products.

However, the straightforward application of approximate

adders in a multiplier may not be efficient; there exists a

trading off accuracy for savings in energy and area. For an

approximate multiplier, the main key design aspect is

reducing the critical path by adding the partial products.

Since multiplication is usually implemented by a cascaded

array of adders, some of the least significant bits in the partial

products are simply omitted (with some error compensation

mechanisms) and also some adders can be removed in array

for a faster operation.

The approximate multipliers are classified into four

categories i) Approximation in Generating Partial Products.

ii) Using simpler structure to generate partial products. iii)

Approximation in the Partial Product Tree. iv) Omitting some

partial products. Dividing partial products into several

sections and applying approximation in the less significant

sections.

B. Algorithm for approximate multiplier

The algorithm for approximate multiplier is shown in

fig.1. First, the input operands are divided into two parts

i) accurate part and ii) approximate part. Left part containing

the most significant bits is the accurate part and the right part

containing least significant bits are called the approximate

part. Since least significant bits contribute less when

compared to most significant bits, for most-significant bits

accurate multiplication is applied. The length of each part

need not necessary be equal.

The multiplication process starts from the starting point in

two opposite directions simultaneously as shown in fig.1, the

two 8-bit input operands, the multiplicand “11100110”(230)

and multiplier “00110010”(56) are divided into two equal-

sized parts , each part containing 4 input bits. As for the least

significant bits of input operands (approximate part), a

special mechanism is applied. The carry generation part

which is responsible for more power consumption is removed

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RTICCT - 2017 Conference Proceedings

Volume 5, Issue 17

Special Issue - 2017

1

and partial products are not generated. Every bit position

from left to right is checked and if both input bits are 1 or one

of two input bit is 1, the corresponding product term is 1 and

from this bit onwards all the product bits of right side are 1, if

both the input bits are 0, the corresponding product bit is 0

and it has no effect on the next right side bits. Fig.1 shows the

operation of approximate multiplier.

Fig 1: Operation of approximate multiplier

For the most significant bits, input operands fall in to

accurate part; the operation is conducted as per the normal

multiplication operation from right to left.

C. Architecture of Approximate Multiplier

In the proposed design as show in fig.2, the input A and B

are divided into two 4-bit blocks each. The control block

contains two, 4-input NOR gates. In the first NOR gate input

bits A7-A4 inputs are applied and on the second NOR gate

input bits B7-B4 inputs are applied and the outputs of these

two NOR gates are applied to the input of NAND gate. The

control block is first used for detecting the logic "1" in the

MSB position of the inputs, (A7-A4) and (B7-B4). When

logic "1" is found, the "ctrl" signal will be activated and the

input operands are high enough to operate in: (i) approximate

part to give the lower order bits of the final output (P7-P0)

and (ii) accurate part to generate the higher order bits of the

product (P15-P8). If no logic “1” is detected by the control

block, all the most significant bits are 0, the multiplexer

selects accurate part to generate the lower order bits of the

product (P7-P0). In the accurate part, the standard 4-bit

parallel multiplier is used to produce higher order output

product terms (P15-P8). The approximate part is designed

using APGs.

D. Approximate recoding adder

Booth multiplication is a technique which allows smaller

and faster multiplication in circuits, by recoding the numbers

that are multiplied. This standard technique used in chip

designing and provides significant improvements over the

"long multiplication" technique.

Fig 2: Architecture of approximate multiplier

A standard approach that might be taken by a new conversion

method to perform multiplication is to "shift and add", or

normal "long multiplication". That is, for each column in the

multiplier, the multiplicand is shifted to the appropriate

number of columns and multiplied by the value of digit in

that column of the multiplier, to obtain a partial product. The

partial products are then added to obtain the final result:

 0 0 1 0 1 1

 0 1 0 0 1 1

 0 0 1 0 1 1

 0 0 1 0 1 1

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 1 0 1 1

 0 0 1 1 0 1 0 0 0 1

With this system, the number of partial products is exactly

the number of columns in the multiplier.

Approximate designs of a Booth multiplier are proposed.

It is based on an approximation scheme which deals not only

with the partial product accumulation, but also with the

generation of recoded multiplicands. A 2-bit approximate

recoding adder is initially designed to reduce the additional

delay encountered in previous radix-8 schemes, thereby

increasing the speed of the radix-8 Booth algorithm. The

partial products in the radix-2 and radix-4 algorithms can be

easily generated by shifting or 2’s complementing; 2’s

complementing is implemented by inverting each bit and then

adding a ‘1’ in the partial product accumulation stage. A

preliminary addition is required to calculate 3Y by

implementing Y + 2Y which incurs additional delay and

power cost. Therefore, a high speed approximate recoding

adder is designed for performing Y + 2Y in this section.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RTICCT - 2017 Conference Proceedings

Volume 5, Issue 17

Special Issue - 2017

2

Fig 3: Proposed approximate 2-bit adder

E. Partial Product Generator

A product is formed by multiplying the multiplicand by

one digit of the multiplier when the multiplier has more

number of bits. Partial products are used for calculating larger

products and is used in intermediate steps.Radix-8 Booth

recoding applies the same algorithm as that of Radix-4, but

here quartets of bits are taken instead of triplets. Radix-8

algorithm reduces the number of partial products to n/3,

where n is the number of multiplier bits. A time gain in the

partial products summation is allowed.

Table: 1 Radix-8 Booth multiplier

Multiplier

bits

Recoded operations to be

performed on multiplicands

0000 0

0001 1× Multiplicand

0010 1× Multiplicand

0011 2× Multiplicand

0100 2× Multiplicand

0101 3× Multiplicand

0110 3× Multiplicand

0111 4× Multiplicand

1000 -4× Multiplicand

1001 -3× Multiplicand

1010 -3× Multiplicand

1011 -2× Multiplicand

1100 -2× Multiplicand

1101 -1× Multiplicand

1110 -1× Multiplicand

1111 0

III. RADIX-8 MULTIPLIER

 Booth multiplier is known as radix-8 because it perform

the 8 different types of operations on the multiplicand that are

+Y, +2Y, +3Y, +4Y, –4Y, –3Y, –2Y and –Y where Y

denotes the Multiplicand. All multiples are easily obtainable,

by simply shifting and complementing except 3Y. The

generation of the 3Y (3× multiplicand), cannot be obtained by

simple shifting and complementation because it is the hard

multiple to generate. It can be produce Y+2Y or 4Y– Y. Here

in this project, it is produced by Y+2Y. For example, the 8×8

bit multiplication generates the 8 partial product rows by

using simple multiplier , but by radix-8 Booth multiplier, the

partial products are reduced to 3 which means that radix-8

Booth multiplier reduces the partial product rows by N/3

where “N” in number of bits in multiplier.

IV. SIMULATION RESULTS

The RTL Schematic and the simulated results of

16-bit Booth multiplier are shown in fig. 4 & 5. Here, the

Booth algorithm is implemented using FSM controller. The

shifting and addition is performed in the same cycle.FSM

controller contains four states. They are wait for go state,

initial state, add shift state, done state. In the first state, inputs

are checked and if they are ready initial state is activated and

if not ready waits till the inputs are given. The second state

concentrates on the addition of bit to the LSB of first partial

product and padding it to the MSB of the first partial product.

If those are satisfied, the add shift state is activated or will

remain in the same state. Add shift state is responsible for

adding the products and shifting bits. If they are satisfied, the

next state is activated. The last state (done state) produces the

final partial product term.

Fig: 4 RTL Schematic of 16 bit Booth multiplier

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RTICCT - 2017 Conference Proceedings

Volume 5, Issue 17

Special Issue - 2017

3

Fig: 5 simulated waveform of 16 bit Booth multiplier

The same FSM operation is used for producing 32 bit

signed Booth multiplier. The recoded values are compared

from the table1. They are simulated using approximate 2 bit

adder, Booth recoding. For storing the next state logic FSM

controller is used. Shifting and addition is done in same

cycle. These are synthesized using Xilinx ISE 14.5. The RTL

Schematic and the waveform are shown in fig 6 & 7.

Fig: 6 RTL Schematic of 32 bit Booth multiplier

Fig: 7 simulated waveform of 32 bit Booth multiplier

A. Device summary

The Design Summary allows to quickly access design

overview information, reports and messages. This tabulation

2&3 results about the number of slices, LUTs, occupied

slices, related logic, bonded IOBs, IOB flip flops, buffers

used among the available devices. Only 1% of the slices,

LUTs related logics are used and the number of bonded IOBs

used here is about 15%.The summary in table 2&3 shows the

amount of devices used are less from the available devices

allotted in the design of 16 and 32-bit Booth multiplier.

Table: 2 Device Summary for 16-bit Booth multiplier

Logic utilization Used Available Utilization

No. of slice Flip flop 87 21,504 1%

No. of 4 I/P LUTs 211 21,504 1%

No. of occupied slices 112 10,752 1%

No. of slices containing

only related logic
112 112 100%

No. of slices containing

unrelated logic
0 112 0%

Total no. of 4 I/P LUTs 211 21,504 1%

No. of bonded IOBs 68 448 15%

IOB Flip flop 33 ----- -----

No. of

BUFG,BUFGRTLs
2 32 6%

No. used as BUFGs 2 ----- -----

Table: 3 Device Summary for 32 bit Booth multiplier

Logic utilization Used Available Utilization

No. of slice Flip flop 87 21,504 1%

No. of 4 I/P LUTs 205 21,504 1%

No. of occupied slices 108 10,752 1%

No. of slices containing only

related logic
108 108 100%

No. of slices containing unrelated

logic
0 108 0%

Total no. of 4 I/P LUTs 205 21,504 1%

No. of bonded IOBs 68 448 15%

No. of BUFG,BUFGRTLs 1 32 3%

No. used as BUFGs 1 ---- ----

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RTICCT - 2017 Conference Proceedings

Volume 5, Issue 17

Special Issue - 2017

4

B.Power Analysis

After synthesis and implementation, use the Power

Analyzer to get a detailed view of the power distribution for

the design, broken down into individual device elements. The

power distribution analysis is done for both 16 and 32-bit

which is shown in table 4 & 5. On comparing 16-bit with

32-bit, the 32-bit Booth multiplier consumes less power than

16-bit.

Table: 4 Power analysis of 16-bit Booth multiplier

On-chip Power (w) Used Available
Utilization

(%)

Clocks 0.030 2 --- ---

Logic 0.005 210 21504 1

Signals 0.025 273 --- ---

DCMs 0.000 0 8 0

IOs 0.019 68 448 15

Leakage 0.234 --- --- ---

Total 0.653 --- --- ---

Table: 5 Power analysis of 32-bit Booth multiplier

On-chip
Power

(w)
Used Available

Utilizatio

n

(%)

Clocks 0.008 1 --- ---

Logic 0.008 203 21504 1

Signals 0.025 232 --- ---

DCMs 0.000 0 8 0

IOs 0.019 68 448 15

Leakage 0.233 --- --- ---

Total 0.241 --- --- ---

C.Delay Analysis

The Timing Analyzer verifies that the delay along a given

path or paths meets your specified timing requirements. It

organizes and displays data that allows to analyze the critical

paths in your circuit, the cycle time of the circuit, the delay

along any specified paths and the paths with the greatest

delay. The delay analysis is performed and the results are

shown in table 6 by comparing 16 bit with 32 bit. The delay

is reduced for 32 bit Booth multiplier which is shown in table

6.

 Table: 6 Delay analysis for 16 and 32-bit Booth multiplier

 16-bit 32-bit

Delay 5.187 ns 5.147 ns

Maximum frequency 192.777 MHZ 194.269 MHZ

V.CONCLUSION

This paper has proposed the approximate computing of

Booth multiplier for Radix-8 of 16 and 32-bit signed

multiplier using approximate 2-bit recoding adder. This adder

incurs less delay, power and area. The synthesis is done using

verilog coding on Xilinx ISE 14.5. The power and delay

analysis had been performed. On comparing 16-bit with 32-

bit, the delay and power had been reduced for 32-bit signed

Booth multiplier.

REFERENCES

[1] Han, J. and Orshansky, M., (2013) ‘Approximate computing: An
emerging paradigm for energy-efficient design’, IEEE European

Test Symposium (ETS), pp. 1-6.

[2] Cho, K.J., Lee, K.C., Chung, J.G. and Parhi, K.K., (2004) ‘Design of

low-error fixed-width modified Booth multiplier’, IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, 12(5), pp.522-531.
[3] Wang, J.P., Kuang, S.R. and Liang, S.C., (2011) ‘High-accuracy

fixed-width modified Booth multipliers for lossy applications’, IEEE

Transactions on Very Large Scale Integration (VLSI)
Systems, 19(1), pp.52-60.

[4] Li, C.Y., Chen, Y.H., Chang, T.Y. and Chen, J.N.,(2011) ‘A

probabilistic estimation bias circuit for fixed-width Booth multiplier
and its DCT applications’. IEEE Transactions on Circuits and

Systems II: Express Briefs, 58(4), pp.215-219.

[5] Chen, Y.H., Li, C.Y. and Chang, T.Y., (2011) ‘Area-effective and
power-efficient fixed-width Booth multipliers using generalized

probabilistic estimation bias’. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 1(3), pp.277-288.
[6] Chen, Y.H. and Chang, T.Y., (2012) ‘A high-accuracy adaptive

conditional-probability estimator for fixed-width Booth

multipliers’. IEEE Transactions on Circuits and Systems I: Regular

Papers, 59(3), pp.594-603.

[7] Kulkarni, P., Gupta, P. and Ercegovac, M, (2011), January. ‘Trading

accuracy for power with an under designed multiplier architecture’.
In the 24th International IEEE Conference on VLSI Design pp. 346-

351.

[8] Lin, C.H. and Lin, C., (2013), October ‘High accuracy approximate
multiplier with error correction’. IEEE 31st International Conference

on Computer Design (ICCD) pp. 33-38.
[9] Momeni, A., Han, J., Montuschi, P. and Lombardi, F., (2015)

‘Design and analysis of approximate compressors for

multiplication’. IEEE Transactions on Computers, 64(4), pp.984-
994.

[10] Liang, J., Han, J. and Lombardi, F., (2013) ‘New metrics for the

reliability of approximate and probabilistic adders’. IEEE
Transactions on Computers, 62(9), pp.1760-1771.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RTICCT - 2017 Conference Proceedings

Volume 5, Issue 17

Special Issue - 2017

5

