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ABSTRACT 

 
Modular arithmetic operations 

(inversion, multiplication and exponentiation) 
are used in several cryptography applications. A 
special moduli set of forms {2

n
-1, 2

n
, 2

n 
+1} are 

preferred over the generic moduli due to the ease 
of hardware implementation of modulo 
arithmetic functions  as well as system-level 
inter-modulo operations, such as RNS-to-binary 
conversion and sign detections. With this 
precept, a family of radix-8 Booth encoded 
modulo 2

n
-1 multipliers, with delay adaptable to 

the RNS multiplier delay, is proposed.  
The first-ever family of low-area and 

low-power radix-8 Booth encoded modulo 2
n
-

1 multiplier whose delay can be tuned to 
match the RNS delay closely has been 
proposed in this paper. A CSA tree with end-
around-carry addition for accumulation of 
redundant partial products and a Sklansky 
parallel-prefix structure has also been 
implemented. 
Index Terms— Public Key Cryptographic 
(PKC),Booth algorithm, modulo arithmetic, 
multiplier, residue number system (RNS) 

 

1. INTRODUCTION 
 
RIVEST, Shamir, and Adleman 

(RSA) and elliptic curve cryptography (ECC) 
are two of the most well established and 
widely used public key cryptographic (PKC) 
algorithms. 

The encryption and decryption of 
these PKC algorithms are performed by 
repeated modulo multiplications [1]–[3].  

 
 

 
 
 
 
 
These multiplications differ from 

those encountered in signal processing and 
general computing applications in their sheer 
operand size. Key sizes in the range of 
512~1024 bits and 160~512 bits are typical in 
RSA and ECC, respectively [4]–[7]. Hence, 
the long carry propagation of large integer 
multiplication is the bottleneck in hardware 
implementation of PKC. The residue number 
system (RNS) has emerged as a promising 
alternative number representation for the 
design of faster and low power multipliers 
owing to its merit to distribute a long integer 
multiplication into several shorter and 
independent modulo multiplications  

 

Modular Multiplication in Public Key 

Cryptosystems   
 
Modulo 2

n
+1, 2

n
, 2

n
-1 addition and  

multiplication are the crucial operations in the 
IDEA algorithm and also modulo 2

n
+1 

arithmetic operations are used in Fermat 
number transform computation. Moduli 
choices of the forms {2

n
+1, 2

n
, 2

n
-1} have 

received significant attention because they 
offer very efficient circuits when considering 
the area * time

2
 product and efficient 

converters from and to the binary system. 
Therefore, designing efficient modulo 2

n
-1 

multipliers is an interesting issue. Modulo 2
n
-

1 multiplication is used extensively in 
Residue Number System (RNS) based Digital 
Signal Processing (DSP) and cryptography 
units. 
 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

1www.ijert.org



 
 

Figure 1:  Modulo (2
n
-1) multiplier 

architecture  

 
 
    The modulo 2

n
 – 1 multiplication of 

two numbers n-bit each follows 3 steps: 
production of n

2
 partial products modulo 2

n
 – 

1 reduction of this n
2
 partial products 2

n
 – 1 

into two numbers of n bits addition of these 
two numbers modulo 2

n
 – 1 with the 

preceding adder. 
 
2. LITERAUTRE SURVEY  

 
The radix-8 Booth encoding reduces 

the number of partial products to  
which is more aggressive than the radix-4 
Booth encoding. However, in the radix-8 
Booth encoded modulo 2

n
-1 multiplication, 

not all modulo-reduced partial products can 
be generated using the bitwise circular-left-
shift operation and bitwise inversion. 
Particularly, the hard multiple |+3X|2

n
-1 is to 

be generated by an n -bit end-around-carry 
addition of X and 2X.  

 

Radix-4 and radix-8 multiplication 

 
Recoding of binary numbers was first 

hinted at by Booth four decades ago. 
MacSorley proposed a modification of 
Booth’s algorithm a decade after. The 
modified Booth’s algorithm (radix-4 
recoding) starts by appending a zero to the 
right of x0 (multiplier LSB). Triplets are taken 

beginning at position x-1 and continuing to the 
MSB with one bit overlapping between 
adjacent triplets. If the number of bits in X 
(excluding x-1) is odd, the sign (MSB) is 
extended one position to ensure that the last 
triplet contains 3 bits. In every step we will 
get a signed digit that will multiply the 
multiplicand to generate a partial product 
entering the Wallace reduction tree. The 
meaning of each triplet can be seen in table I: 
 
Table I: Radix-4 encoding 
 

 
This recoding scheme applied to a parallel 
multiplier halves the number of partial 
products so the multiplication time and the 
hardware requirements decrease. This gain is 
possible at the expense of somewhat more 
complex operations in every step.  However, 
that the required multiples of Y {0, Y, 
2Y} are available by merely shifting Y to 
the left. Although the algorithms and 
operations specified above seem rather 
arbitrary at the first sight, they are based on 
meaningful number systems. If one focuses 
on what modifications are being done to X, 
then one may arrive at a different 
representation for the 2s-complement number 
X as shown in figure 2: 

 
Figure 2: Signed-digit representation 

 
where digits Di are one of -2, -1, 0, 1, 
2found in the table of figure 1, based on the 
value of triplets in the form (xi+2 xi+1 xi). 
Here we have a signed digit representation of 
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X in radix-4. Signed-digit number 
representation allows redundancy to exist. 
Thanks to this we can make a parallel 
recodification that is, all triplets are recoded at 
the same time, and the value of each triplet is 
independent from the adjacent triplets. 
Radix-8 recoding applies the same algorithm 
as radix-4, but now we take quartets of bits 
instead of triplets. Each quartet is codified as 
a signed-digit using the table II:  

TableII:Radix-8 recoding 

 
Here we have an odd multiple of the 
multiplicand, 3Y, which is not immediately 
available. To generate it we need to perform 
this previous add: 2Y+Y=3Y. But we are 
designing a multiplier for specific purpose 
and thereby the multiplicand belongs to a 
previously known set of numbers which are 
stored in a memory chip. We have tried to 
take advantage of this fact, to ease the 
bottleneck of the radix-8 architecture, that is, 
the generation of 3Y. In this manner we try to 
attain a better overall multiplication time, or 
at least comparable to the time we could 
obtain using radix-4 architecture (with the 
additional advantage of using a less number 
of transistors). To generate 3Y with 21-bit 
words we only have to add 2Y+Y, that is, to 
add the number with the same number shifted 
one position to the left, getting in this way a 
new 23-bit word, as shown in figure 3:  

 
Figure 3: 21-bit previous add 

 

In fact, only a 21-bit adder is needed to 
generate the bit positions from z1 to z21. Bits 
z0 and z22 are directly known because z0=y0 
and z22=y20 (sign bit of the 2s-complement 
number; 3Y and Y have the same sign). If in 
the memory from where we take the numbers 
just two additional bits are stored together 
with each value of the set of numbers, we can 
decompose the previous add in three shorter 
adds that can be done in parallel. In this way, 
the delay is the same of a 7-bit adder: 

 
Bits which are going to be stored are the two 
intermediate carry signals c8 and c15. Before 
each word of the set of numbers is stored in 
the memory, the value of its intermediate 
carries has to be obtained and stored beside it.  
In this way, they are immediately available 
when it is required to perform the previous 
add to get the multiple 3Y of one of the 
numbers that belongs to the set.   

The radix-4 Booth encoding 
technique is most prevalent as all required 
modulo reduced partial products can be 
generated by circular-left-shift operation and 
bit-wise complementation, thereby 
minimizing the hardware complexity. The 
reduction in the number of partial products is 
determined by the radix of the Booth 
encoding technique employed. Reduction of 
partial products by more than half is possible 
with higher radix Booth encoding. Similar to 
the radix-4 algorithm, the radix-8 Booth 
encoding algorithm can be considered as a 
digit set conversion of four consecutive 
multiplier bits y3i-1,y3i,y3i+1,y3i+2 , yi Є  
{0, 1}from Y, to di , di Є [−4, 4], for i = 0, 1, 
… Ν/3. 
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The digit set conversion is given by 

 (1) 
where y-1, yn, yn+1 and yn+2 are zero. For the 
radix-8 Booth encoded modulo 2

n
-1 

multiplier, the required modulo-reduced 
partial products are shown in Table III. 
From Table 3, the necessary modulo-reduced 
partial products except ±3X can be generated 
by circular-left-shift operat-ion and/or bit-
wise complemen-tation of the multiplicand, X. 
The generation of±3X requires a large word-
length adder which increases the critical path 
delay of the multiplier significantly. 

 
TABLE III: MODULO-REDUCED 

PARTIAL PRODUCTS FOR RADIX-8 
BOOTH ENCODING 

 

 
 

results also confirm that the proposed method 
helps pathologists distinguish exact lesion 
sizes and regions 

 

3. PROPOSED RADIX-8 BOOTH 

ENCODED MODULO 2
n
-1 

MULTIPLIER DESIGN 
To ensure that the radix-8 Booth 

encoded modulo 2
n
-1multiplier does not 

constitute the system critical path of a high-
DR moduli set based RNS multiplier, the 
carry propagation length 
in the hard multiple generation should not 
exceed n bits. To this end, the carry 
propagation through the HAs in Fig. 1 can be 
eliminated by making the end-around-carry 
bit c7 a partial product bit to be accumulated 
in the CSA tree. This technique reduces the 

carry propagation length to n bits by 
representing the hard multiple as a sum and a 
redundant end-around-carry bit pair. The 
resultant [n/3] +1 end-around-carry bits in the 
partial product matrix may lead to a marginal 
increase in the CSA tree depth and 
consequently, may aggravate the delay of the 
CSA tree. In which case, it is not sufficient to 
reduce the carry propagation length to merely   
n bits using the above technique. 

Since the absolute difference between 
the noncritical modulo 2

n
-1 multiplier delay 

and the system critical path delay depends on 
the degree of imbalance in the moduli word-
length of a RNS, the delays cannot be 
equalized by arbitrarily fixing the carry 
propagation length to n bits. Instead, we 
propose to accomplish the adaptive delay 
equalization by representing the hard multiple 
in a partially-redundant form [48].  
A. Generation of Partially-Redundant Hard 

Multiple 

    Let X 2
n

-1 and 2X 2
n

-1 be added by a group 
of M (=n/k) k-bit RCAs such that there is no 
carry propagation between 
the adders. Fig. 2 shows this addition for n=8 
and k=4,where the sum and carry-out bits 
from the RCA block j are represented as Si

j 

andci
j
 for i [0,k-1] and j [0,M-

1],respectively. In Fig. 2, the carry-out of 
RCA 0,C3

0
 , is not propagated to the carry 

input of RCA 1 but preserved as one of the 
partial product bits to be accumulated in the 
CSA tree. The binary weight of the carry-out 
C3

1
of RCA 1 has,however, exceeded the 

maximum range of the modulus and has to be 
modulo reduced before it can be accumulated 
by the CSA tree. 
   By Property 2, the binary weight of C3

1 
can 

be reduced from 2
8 
to 2

0
 . Thus, C3

1
 is inserted 

at the least significant bit (lsb)position in Fig. 
6. It should be stressed that the carry-out C3

1
 

is a partial carry propagated through only k 
most significant FAs and hence, is different  
from the end-around-carry bit in the modulo 
2

n
-1 addition of X and 2X , i.e., c7 of Fig. 

5.From Fig. 6, the partially-redundant form of 

 +3X 2
n

-1 is given by the partial-sum and 
partial-carry pair(S,C)  
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Fig. 5. Generation of partially-redundant 
|+3X 2

n-1 using k-bit RCAs 
 
 

 
 

Fig.6. Generation of partially-redundant  

B+3X 2
n

-1 

 
where 

 
 
Since modulo 2

n
-1  negation is equivalent to 

bitwise complementation by Property 1, the 
negative hard multiple in a partially-

redundant form,  -3X 2
n

-1=( , ), is computed 
as follows: 
 

 
To avoid having many long strings of ones in 

 , an appropriate bias B, , is added to the 
hard multiple such that both 

C and  are sparse [48]. The value of B is 
chosen as 
 

 
 

 
Fig. 7. Generation of partially-redundant 
simple multiples. 
 
 
 
 
 

 
 
 
Fig. 8. Modulo-reduced partial products and  

CC for  X Y 2
8

-1 

 

   The addends for the computation of the 
biased hard multiple,  B+3X 2

n
-1 in a 

partially-redundant form are  X 2
n

-1,  2X 2
n

-

1and B or equivalently S,C and B. Since is 
chosen to be a binary word that has logic ones 
at bit positions 2

kj
 and logic zeros at other bit 

positions, |B+3X|2
n

-1 can be generated by 
simple XNOR and OR operations on the bits 
of S and C at bit positions 2

kj
. Fig. 6 illustrates 

how these bits in the sum and the carry 
outputs of RCA 0 and RCA 1 are modified.  

In general |B+3X|2
n

-1 , is given by the 
partial-sum and partial-carry pair 
(BS,BC)such that 

 

 
where 
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and 

 
For j=0, 1… M-1. 
 
Let 

 

 
Fig. 9. Modulo-reduced partial product 
generation. 
 
It can be easily verified that the sum of (BS, 
BC) and() modulo 2

n
-1 is |2B|2

n
-1  . 

Therefore,()represents the partially-redundant 
form of B-3X|2

n
-1. 

B. Generation of Partially-Redundant 

Simple Multiples 

The proposed technique represents 
the hard multiple in a biased partially-
redundant form. Since the occurrences of 
the hard multiple cannot be predicted at 
design time, all multiples must be uniformly 
represented. Similar to the hard multiple, all 
other Booth encoded multiples listed in Table 
I must also be biased and generated in a 

partially-redundant form. Fig. 7 shows the 
biased simple multiples, |B+0|2

n
-1, |B+X|2

n
-1, 

|B+2X|2
n

-1, and |B+4X|2
n

-1 represented in a 
partially-redundant form for n=8. From Fig. 
10, it can be seen that the generation of these 
biased multiples involves only shift and 
selective complementation of the multiplicand 
bits without additional hardware overhead. 
C. Radix-8 Booth Encoded Modulo 2

n
-1 

Multiplication with Partially-Redundant 

Partial Products 

The i-th partial product of a radix-8 Booth 
encoded modulo 2

n
-1 multiplier is given by 

PPi= |2
3i

 ·di · X2
n

-1             (12) 
To include the bias B necessary for partially-
redundant representation of PPi , (12) is 
modified to  
PPi =|2

3i
 (B+di · X)2

n
-1                                    (13)                                 

 Using Property 3, the modulo 2
n
-1  

multiplication by 2
3i

 in (13) is efficiently 
implemented as bitwise circular-left-shift of 
the biased multiple, (B+di · X). For n=8 and 
k=4 ,Fig. 8 illustrates the partial product 
matrix of X·Y)2

8
-1with 

 

 
 
Fig.10. (a) Bit-slice of Booth Encoder (BE). 
(b) Bit-slice of Booth Selector (BS). 
 
 (n/3+1) partial products in partially-
redundant representation.Each PPi consists of 
an n-bit vector, ppi7---ppi1 ppi0 and a vector of 
n/k=2 redundant carry bits, qi1 and qi0 . Since 
qi0 and qi1 are the carry-out bits of the RCAs, 
they are displaced by k-bit positions for a 
given PPi. The bits, qij is displaced circularly 
to the left of q(i-1) j by 3 bits, i.e., q20 and q21 
are displaced circularly to the left of q10 and 
q11 by 3 bits, respectively and q10 and q11 are 
in turn displaced to the left of q00 and q01 by 3 
bits, respectively. The last partial product in 
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Fig. 8 is the Compensation Constant (CC) for 
the bias introduced in the partially-redundant 
representation.  

The generation of the modulo-
reduced partial products, PP0, PP1 and PP2, in 
a partially-redundant representation using 
Booth Encoder (BE) and Booth Selector (BS) 
blocks are illustrated in Fig. 8. The BE block 
produces a signed one-hot encoded digit from 
adjacent overlapping multiplier bits as 
illustrated in Fig. 10(a). The signed one-hot 
encoded digit is then used to select the correct 
multiple to generate PPi. A bit-slice of the 
radix-8 BS for the partial product bit, PPij is 
shown in Fig. 10(b). 

Fig. 11. Modulo-reduced partial product 
accumulation.  
As the bit positions of qij do not overlap, as 
shown in Fig. 8, they can be merged into a 
single partial product for accumu-lation.The 
merged partial products , PPi and the constant 
CC are Accumulated using a CSA tree with 
end-around-carry addition at each CSA level 
and a final two-operand modulo 2

n
-1 adder as 

shown in Fig. 11. 

4. RESULTS 

 

 
 

Fig. 12.Multiplier Simulation Results 

 
 

Fig 13.Radix-4 Synthesis Report(Gate 

Count) 

 
Fig.14.Radix-8 Synthesis Report (Gate 
Count) 

 

5. CONCLUSION 

 
  A family of low-area and low-power 
modulo 2

n
-1 multipliers with variable delay to 

achieve delay balance amongst individual 
modulo channels in a high-DR RNS 
multiplier was proposed. The delay of the 
proposed multiplier is controlled by the word-
length of the small parallel RCAs that are 
used to compute the requisite hard multiple of 
the radix-8 Booth encoded multiplication in a 
partially-redundant form. From synthesis 
results constrained by the critical channel 
delay of the RNS, it was shown that the 
proposed multiplier simultaneously reduces 
the area as well as the power dissipation of 
the radix-4 Booth encoded multiplier for 
n≥28, which is the useful dynamic range of 
RNS multiplication to meet the minimum 
key-size requirements of ECC and RSA 
algorithms. 
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