
Design of Non-Functional Requirement(Security)

using Security Design Patterns in Architecture

Phase to Develop Secure SDLC

E. R. Aruna

Department of Information Technology

Vardhaman College of Engineering

Hyderabad, Telanagana, India

A. Rama Mohan Reddy

Professor of CSE

SVUCE, Tirupathi

 K. V. N Sunitha

 P rincipal,
 BVRIT Hyderabad

Andhra Pradesh, India India

Abstract— Software Development life cycle is the concrete

process to develop software product, but it is still to be refined to

handle Non-functional requirements at all stages of the life cycle

of the product development. To develop 100% successful

product, there must be equal importance between functional

requirements and Non functional requirements. Some of those

NFR’s are Performance, Reliability, Security, Operability,

Modifiability etc. The design decisions are resolved at early

stages if it is possible to encompass all non functional

requirements along with the functional requirements in all

phases of SDLC. This paper focuses on importance of NFR

(security) design in architecture phase of SDLC and proposes a

methodology to include security feature using security design

patterns. As a case study we have illustrated this methodology to

iLocking system Application. We believe “including security

design patterns in Architecture is resistant to insecure features”.

Our approach is most suitable for the security critical

applications; such applications can be run on any device

irrespective of mobile platform or fixed platform with high

security. With this we will achieve secure SDLC at one phase i.e.

Architecture phase.

Keywords: secure SDLC, NFR, security design patterns, iLocking

system

I. INTRODUCTION

The focus of my paper is “Reducing reengineering cost by

designing the application through ingesting non functional

requirements termed as quality attributes within the SDLC

right from its beginning”. Software Development Team must

recognize software security as an intrinsic part of the

software development process, not a reconsideration which

requires additional cost and time.

Most of the software development methodologies

improvement is towards to speed up the product outmoded to

market by delivering software Functional Requirements [6].

Many industry people support that the above methodologies

are suffering from inability to express Non-functional

Requirements (NFRs) explicitly, as primary artifacts in

SDLC phases [8]. In traditional process they have been

treating the non functional requirements as secondary

artifacts [2] [4] [9] [18]. There is a serious limitation in

emphasizing the project schedules pertaining to technical and

non-functional requirements of the product to meet the

product dead line. M. Farid and J. Mitropoulos proposed

visualization framework that is used to schedule software

non-functional requirements implementations by utilizing

agile project management agile techniques [19]. Non-

functional requirements must be treated as Primary or

Specific requirements [20] in SDLC.

The Security is the major concern in all software product

implementations in recent years. In addition to the

government agencies and Industry, the individual people also

using the software products in public as well as private

domains. This enormous usage of the software product

systems has resulted software products need to be maintain

and manage large amount of critical information. It is

significant to safeguard the software products which are

developed as per the customer’s needs commonly called as

functional requirements. It is coequally important to assure

that these systems are safeguarded [10].

Most of the software practitioners recognized it is better to

design security from scrape. It is prominent to use security

models at early stages of SDLC for improving the software

product security. Ivan Victor krsul [7] describes best

practices and how to apply those practices to produce security

artifacts of software product during development. Many

researchers agreed to include security features within the

software development life cycle from the beginning can

improve overall software security.

Many of the researchers uses Misuse case analysis to find the

security threat analysis. Misuse case analysis creates

interactions among application and attackers. With this

interactions the researchers can find the attackers who crosses

security boundaries [11][12]. The application must protect

itself from security threats during applying misuse cases [15].

Researchers build misuse cases at initial phases of SDLC,

meanwhile they should care from misuse cases not to access

data, interfaces, and methods of the actual product. Software

development team must use security technology to protect

and remove the vulnerabilities [17] while using misuse cases

to deal security concerns. In our proposed research we are

working with the alternative model to design the product by

including security features, patterns. In our approach we are

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110393

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

365

not dealing with the misuse cases but we are appending the

security feature as security design patterns in the design

phase.

This paper is organized as related work in section 2,

significance of considering non functional requirements in

SDLC architecture phase in section 3, design of case study

using security design patterns in section 4 and finally

concluded with future work in section 5.

2. RELATED WORK

Many approaches are there to design and develop the product

using secure SDLC. Some of them are used security design

patterns for analyzing the potential attacks [26]. Some

approaches treated Security design patterns as a tool for

improving product security in Architecture phase [16]. The

insistence of security in software product at the Architecture

phase can reduce the high cost and effort in continuation with

coding phase [27].

Halkidis, Nikolaos, Alexander Chatzigeorgiou, George

Stephanides proposed a method Architecture risk analysis of

software systems using security patters using mathematical

model based on the fuzzy set theory and fuzzy fault trees by

using class diagram of security critical application[29].

Our approach, we are design the security issues whose

security is utmost importance in the architecture phase. Here

we are representing security features as patterns, exceptions,

techniques and process depends on the applications. With

this, the application is properly communicated about security

concerns among the development team right from the

beginning stages of development.

3. SIGNIFICANCE OF INCLUSION OF NON FUNCTIONAL

REQUIREMENT IN ARCHITECTURE PHASE

Architecture Phase is the most critical of the SDLC four

phases [5]. Overall structure of the software is defined in

Architecture phase of SDLC. Identification of essential

components, whose security is uttermost serious, must be

identified. Security architecture and design guidelines are

included in this phase. Architects achieve complete system

quality with optimum balance of system characteristics by

means of active communication during entire development

process. Architects as stakeholders involves directly or

indirectly for quality balance in construction Phase. Hence

Architecture people are responsible for overall system

qualities [3].
Architecture is a representative for the system qualities to
retain acceptable harmony between the functional and non-
functional requirements during product development.
Architect people emphasize entire structure of software
product; achieve predictable results through diagrams and
descriptions for the communication with developers[13].

As an existing problem point of view there is a discrepancy in

the definition of non-functional requirements i.e illustration

problems raises whether NFR must be treated as a function or

quality or a constraint in the SDLC. Once it is accustomed

then a representation problem arises at various stages of the

life cycle. In the literature there are different views on

functional and non-functional requirements, still there is in

need to develop consensus model which facilitates how non

functional requirements are elicited, represented, integrated

and tested in the software development process.

In design phase, security policies can be easily incorporated

by means of secure and insecure states. If the system enters

any unauthorized state, security system starts authorizing the

state and makes never let it enters into unauthorized state

[23].

In our approach we are using UML tools and object oriented

design patterns together to represent secure software

architecture. Unified modeling language is the universal

standard language for software product design. UML is the

most accepted tool to present proper objects, classes,

interfaces, inheritance and establish key relationships among

them [1]. Design Patterns can be used to specific problem,

they are reusable, provides flexible design, addresses future

problems and avoid redesign [21]. Multifold security

principles are manifested in security design patterns

[24].Security patterns and Analysis patterns can be used to

build secure systems and conceptual models [5] [22] [25].

4. ILOACKING SYSTEM DESIGN USING SECURITY PATTERNS

To model Non functional requirement (security) in

architecture phase we used the application “Secure door

locking system using Bluetooth technology (ilocking

System)” [14]. This system and its iLock App are wirelessly

linked together using Bluetooth technology. This Application

provides secure keyless access depends upon key generation

and key matching. In this application, House owner is locking

or unlocking the door using iLock App from his mobile. The

iLock System device is fixed to the door. From his registered

mobile the owner has to send request for pairing with iLock

device at the time of locking or unlocking door. The iLock

app will generate key, key has to be entered in the iLock

device and gets authenticated with matching key, then the

door gets locked/unlocked. If safecracker tries this, the iLock

component will deny the services and issue alert to owner

because the key generation is done not with registered mobile

number.

We are illustrating this application using use case diagram,

activity diagram, sequence diagram and state chart diagrams.

We are modeling security concerns in the architecture with

security patterns, security principles (integrity,

confidentiality, Non-reputability). We have chosen this

application because the security is most critical and is useful

for enormous users.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110393

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

366

The following is the design of iLocking system using
security design patterns:

Request for pairing

Generate Key

Enter Key

HouseOwner

Lock/Unlock

<<Key Genration>>

authorization enforcer

pattern

Request For Pairing

Generate Key

Safe Craker

Enter Key

<<Key Generation>>

Fig.1Use case Diagrams

In Fig.1 We introduce the concept of NFR by means of

security in this use case diagram, representing with security

principal confidentiality in terms of key generation. We are

also representing the authorization enforcer pattern used to

manage and delegate authorization process. This security

pattern enforces authorization constraints in every situation of

designing. House owner requests for pairing with iLock

device by generating a key. The secret key generation process

must dependent on security pattern.

In fig.2 here we are achieving Integrity through key mapping

process. The key mapping must be based on Authentication

enforcer pattern and Intercepting validator pattern. The

authentication enforcer pattern illustrates how a client should

authenticate with the security application. Intercepting

validator pattern validate input from client for security

purpose. Based on the key mapping, iLock device gives

privileges for locking/unlocking the door or simply deny

privileges.

Mapping the key

Grant Privileges

Secure Logger

Pattern

Intercepting

validator pattern

authentication

enforcer

pattern

Deny Privileges

iLock System

Issue Alert to owner

<<Key Mapping>>

 Fig.2 iLock System Use Case Diagram

We use activity diagram to show activities flow one after

other. In this design representation we are achieving

confidentiality, integrity and Non-repudiation by performing

key generation and mapping. In addition to authentication

and authorization enforce patterns; we can take other security

patterns into consideration for performing security activities

in this application.

There is a standard approach of selecting required pattern

from the patterns catalog is available developed by Weiss M

[28]. Once the Architect people and Developers knows about

which type of security feature required like confidentiality,

integrity, availability they can enter into the search engine of

the repository catalog available, the search engine search and

indexes them according the need of NFR.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110393

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

367

Fig.3 Activity Diagram

We use sequence diagram to show object interactions in

timely manner. Here we can precise security protocols in the

form of representing with message sequences. Here the

objects owner, iLock system and safecracker exchanges

cryptographic operations in the form of key generation and

mapping. These two use cases must be developed using

suitable proven security patterns to achieve confidentiality,

integrity which mentioned in figure.1.

House OwnerHouse Owner 8:Match with Safe

Cracker key

8:Match with Safe

Cracker key

Safe CrackerSafe Cracker

1:Request for pairing

2:Request For pairing

3:Generate key

4:Generate Key

5:Enter key

6:Enter key

7:Match with the key

8:Match with Safe cracker key

9:Issue Privileges

10:Deny Privileges

11:Issue alert

Fig.4 Sequence Diagram

We use statechart diagram to specify various states of a

component. The states are specific to either component or

system but not both. This diagram shows dynamic

behavior and state of an in-dividable object may change

with respect to events generated. This kind of

representations shows the security context in terms of

secure and insecure states. If the system gets into insecure

state, we must protect the system by concentrating on

lacking security features by selecting appropriate design

patterns.

Request to

pair

Enter key and wait

for authentication

Match with

Key

Secure

State

Grant access

privileges

Issue alert

to Owner

Insecure

State

<<Authentication>>

<<Generate Key>>

Fig.5 State chart Diagram

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented architecture with security

concerns using UML, security principles and security

patterns. Our design methodology proposed ‘security features

must be introduced in all phases of SDLC right from the

beginning’.

The combination of security patterns, principles and concrete

UML design methodology improves software quality and

development productivity.

In the Architecture phase, secured design can be extracted if

most appropriate security patterns are selected and applied

specific to problem. There is still required to develop

universally accepted design practice to include a collection of

non functional requirements in SDLC. So that we can reduce

over head effort, cost and time in software development

process. In our extension work, we are comparing the

performance of our method of design with already

implemented software products and also we would like

calculate the performance of each security pattern and

combination of patterns which are used to represent as a

security feature in the Design.

Request for

pairing

Key

Generation

Mapping

with key

Deny

Privileges

Issue alert

to Owner

Grant access

privileges

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110393

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

368

REFERENCES

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal.,
Pattern oriented software architecture, Wiley 1996.

[2] N. Mead, V. Viswanathan, and D. Padmanabhan, “Requirements
Engineering into the Dynamic Systems Development Method”, Proc. of
the 2008 32nd Annual IEEE International Computer Software and
Applications Conference, 2008, pp. 949-954.

[3] Bass, L., Clements, P., Kazman, R., 2003, Software Architecture in
Practice, Addison-Wesley

[4] J. Araujo and J. Ribeiro, “Towards an Aspect-Oriented Agile
Requirements Approach”, In proceedings of the Eighth International
Workshop on Principles of Software Evolution (IWPSE’05), 2005, pp.
140-143.

[5] “Software Project Management”, A Unified Frame Work by walker
Royce

[6] M. Qasaimeh, H. Mehrfard, and A. Hamou-Lhadj, “Comparing Agile
Software Processes Based on the Software Development Project
Requirements”, In Proceedings of 2008 International Conferences on
Computational Intelligence for Modeling, Control and Automation;
Intelligent Agents, Web Technologies and Internet Commerce; and
Innovation in Software Engineering, 2008, pp. 49-54.

[7] I. V. Krsul, "Computer vulnerability analysis", PhD thesis, Purdue
University, 1998

[8] A. Marcal, F. Furtado Soares, and A. Belchior, “Mapping CMMI
Project Management Process Areas to SCRUM Practices”, In 31st
IEEE Software Engineering Workshop (SEW 2007), 2007.

[9] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements Engineering and
Agile Software Development”, In IEEE Twelfth International
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2003, pp. 308.

[10] CERT Coordination centre, (2003), Annual Report,www.cert.org

[11] I. Alexander, "Misuse cases: Use cases with hostile intent", IEEE
Software 20 , 2003, pp. 58-66.

[12] McDermott, C. Fox, "Using abuse case models for security
requirements analysis", Proc. Annual Computer Security Applications
Conference (ACSAC'99), 1999.

[13] Roland Faber “Architects as Service Providers” IEEE Software,
Volume:PP , Issue: 99

[14] http://www.locksmithledger.com/product/12101366/alarm-lock-
systems-inc-architech-with-bluetooth-le-ilock-app

[15] D. Firesmith, "Security Use Case," Journal of Object Technoly (JOT),
Vol. 2, No.3, May/Jun 2003, pp.53-64.

[16] M-A. Laverdi`ere, A. Mourad, A. Hanna, M. Debbabi, “Security
Design Patterns: Survey and Evaluation”, IEEE CCECE/CCGEI,
Ottawa, May 2006

[17] Petersen, G. , Steven, J Building Security in “Defining Misuse within
the Development Process” Security & Privacy, IEEE , Volume:4 ,
Issue: 6

[18] R. Pressman, Software Engineering, A Practitioner‟s Approach, New
York, NY, McGraw-Hill, 2005.

[19] Weam M. Farid, Frank J. Mitropoulos “ Visualization and Scheduling
of Non-functional Requirements for Agile Processes” , in
Southeastcon, 2013 Proceedings of IEEE ,pp.1-8.

[20] Rubey, R. J., and R. D. Hartwick, Quantitative Measurement of
Program Quality, in Proceedings of ACM National Conference, pp.
671–677, 1968.

[21] E. Gamma, R. Helm,R. Johnson, and J. Vlissides, Design patterns –
Elements of reusable object-oriented software, Addison-Wesley 1995.

[22] E.B.Fernandez, “Layers and non-functional patterns”, Procs of
ChiliPLoP, 2003. Phoenix,March 10-15,
2003.http://hillside.net/chiliplop/2003/

[23] Gaurav Raj, Dr. Dheerendra Singh, Dr. Abhay Bansal, “Analysis for
Security Implementation in SDLC” 2014 IEEE,2014, pp.221-226.

[24] J.H.Saltzer and M.D.Schroeder, “The protection of information in
computer systems”, Procs. of the IEEE, Vol. 63, No 9, 1975, 1278-

1308.

Awebversionisin:http://web.mit.edu/Saltzer/www/publications/protecti
on/index.html

[25] E.B. Fernandez and X. Yuan, “Semantic analysis patterns”, Procs. of
19th Int. Conf. on Conceptual Modeling, ER2000, 183-195. Also
available from: http://www.cse.fau.edu/~ed/SAPpaper2.pdf

[26] Eduardo B. Fernandez, Maria M. Larrondo-Petrie, “Designing Secure
SCADA Systems Using Security Patterns”, Proceedings of the 43rd
Hawaii International Conference on System Sciences – 2010.

[27] Spyros T. Halkidis,Nikolaos Tsantalis,Alexander Chatzigeorgiou,
George Stephanides, “Architectural risk analysis of software systems
based on securitypatterns”, ieee transactions on dependable and secure
computing, vol.5,no.3,july-september2008.

[28] Weiss. M, Mouratidis, H, “Selecting Security Patterns that Fulfill
Security Requirements” International Requirements Engineering, 2008.
RE'08.16thIEEE.

[29]. Spyros T. Halkidis, Nikolaos Tsantalis, Alexander Chatzigeorgiou,
George Stephanides,”Architectural Risk Analysis of Software
SystemsBased on Security Patterns”, IEEE transactions on dependable
and secure computing volume 5, No.3 July-Sept 2008.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS110393

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 11, November-2015

369

