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Abstract— This paper provides a theoretical framework for 

modelling and simulation for optimal control design of a 

nonlinear dynamic system. In this paper we have considered a 

Batch reaction as nonlinear dynamics. During the mixing of the 

chemical reactants, a sudden unpredictable amount of heat is 

released causing exothermic reaction. This may affect the 

product quality and may damage the system. An optimal control 

technique such as Linear Quadratic Regulator (LQR) and 

Proportional Integral Control(PID)  method are used for control 

of the temperature of the chemical process and hence maintain 

the adequate conditions for the process to  take place. The non-

linear system states are fed to the LQR which is designed using 

linear state space model. The analysis of the simulation results 

revealed that LQR and two PID controllers together can give 

better performance than a simple LQR controller 

Key words— Batch process , LQR, PID, Optimal control,  Non-

linear dynamic system. 

 
I. INTRODUCTION  

 

In an exothermic reactor, a large amount of heat 

liberated during the mixing of reactants can cause thermal 

runaway[1] if the generated heat exceeds the cooling 

capacity of the reactor tank. This may affect the product 

quality and pose safety problem to the plant. Hence it is 

necessary to have a precise temperature control[2] in such 

reactors. Here the control problem consists of obtaining the 

model of the reactor, and using this model to determine the 

control laws or strategies to achieve the desired system 

response and performance. 

The Proportional-Integral-Derivative (PID) control is 

used to give efficient solution to various real-world control 

problems[3]. The transient and steady- state responses are 

taken care of with  three-terms (i.e. P, I, and D). To make 

the performance of the system optimal LQR(Linear 

Quadratic Regulator ) optimization is used. 

As the input flow rates of the reactants increases the tank 

temperature as well as level also increases. Here we use 

LQR to control   the temperature and later we use LQR +two 

PID controllers[6] for controlling temperature as well as 

level. 

The organisation of the paper is as follows. Section II  

discusses about the mathematical modelling of the mixing 

tank which includes linearization  of the system equation 

and modelling of the reactor. Section III presents the design 

of controller 

 

II. MATHEMATICAL MODELLING 
 

A. Linearization of the System 

Jacobian Linearization method is used to linearize the 

non linear system, about a specific operating point, called 

an equilibrium point. 

Consider a non-linear differential equation 

𝑥  𝑡 = 𝑓(𝑥 𝑡 , 𝑢(𝑡))                                                    (1) 

where f is a function mapping 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑛 . A Point  

𝑥 ∈ 𝑅𝑛  s called an equilibrium point if there is a specific          

 ∈  𝑅𝑚  such that 𝑓 𝑥 , 𝑢  = 𝑂𝑛 . 

Defining deviation variables to measure the difference 

     𝛿𝑥 𝑡 = 𝑥 𝑡 − 𝑥 .                                                   (2) 

     𝛿𝑢 𝑡 = 𝑢 𝑡 − 𝑢 .                                                   (3) 

The Relation between x(t) and u(t) are given by the 

differential equation  

      𝑥  𝑡 = 𝑓(𝑥 𝑡 , 𝑢(𝑡))                                              (4) 

Substituting the deviation variables  in (4),  we get 

          𝛿𝑥
  𝑡 = 𝑓(𝑥 + 𝜕𝑥(𝑡), 𝑢 + 𝜕𝑢(𝑡))                            (5) 

Using Taylor series expansion in equation (5) 

         𝜕 𝑥 𝑡 ≈
𝜕𝑓

𝜕𝑥
𝛿𝑥 𝑡 +

𝜕𝑓

𝜕𝑢
𝛿𝑢 𝑡 .                                    (6) 

The higher order terms are neglected. 

The above differential equation holds good for the 

deviation variables as long as the deviation variables are 

small. It is a linear, time-invariant[9], differential equation, 

since the derivatives of δx are linear combinations of the δx 

variables and the deviation inputs, δu. The matrices 

𝐴 =
𝜕𝑓

𝜕𝑥
 𝑎𝑡 𝑥 = 𝑥  𝑎𝑛𝑑 𝑢 = 𝑢  ,                                      (7)   

                     

 𝐵 =
𝜕𝑓

𝜕𝑢
 𝑎𝑡 𝑥 =  𝑥   𝑎𝑛𝑑 𝑢 = 𝑢 ∈ 𝑹 n×n  

                        (8)                                       

are constant matrices. The Linear system can now be 

defined as  

      𝛿𝑥
  𝑡 = 𝐴𝛿𝑥 𝑡 + 𝐵𝛿𝑢(𝑡)).                                        (9) 
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This is the Jacobian Linearization of the nonlinear system 

about the equilibrium point (𝑥 ,  𝑢 ). For small values of 

𝛿𝑥  𝑎𝑛𝑑 𝛿𝑢  the linear equation approximately governs the 

exact relationship between the deviation variables 

𝛿𝑥  𝑎𝑛𝑑 𝛿𝑢  . 

B. Chemical Reactor 

Consider a mixing tank[7], with constant supply 

temperatures TC and TH and input flow rates qc(t) and qH(t). 

The equations for the tank are:   

     𝑕  𝑡 =
1

𝐴
 𝑞𝑐 𝑡 + 𝑞𝑕 𝑡 − 𝐶𝐷𝐴0 2𝑔𝑕 𝑡            (10)              

   𝑇 𝑇 𝑡 =
1

𝐴𝑕(𝑡)
 𝑞𝑐 𝑡 [𝑇𝐶 − 𝑇𝑇] + 𝑞𝑕 𝑡 [𝑇𝐻 − 𝑇𝑇]   (11) 

       where A is the area of the tank, TT  is the 

temperature of the product inside the tank. 

 

Fig.1 Batch Process - Mixing Tank 

 

Let the state vector X and input vector U be defined as: 

       𝑋(𝑡) =  
𝑕 𝑡 
𝑇𝑇(𝑡)

    ,𝑈(𝑡) =  
𝑞𝑐(𝑡)
𝑞𝐻(𝑡)

                        (12)                 

     𝑓1 𝑥, 𝑢 =
1

𝑥1𝐴
 𝑢1 + 𝑢2 − 𝐶𝐷𝐴0 2𝑔𝑥1               (13) 

     𝑓2(𝑥, 𝑢) =
1

𝐴
 𝑢1 𝑡 [𝑇𝐶 − 𝑥2] + 𝑢2 𝑡 [𝑇𝐻 − 𝑥2]   (14)  

  

Where 𝑢1=𝑞𝑐(𝑡), 𝑢2 = 𝑞𝐻(𝑡) and 𝑥1 = 𝑕 𝑡 , 𝑥2 = 𝑇𝑇(𝑡) 

For any height 𝑕 > 0  and any tank temperature 𝑇𝑇
 , 

satisfying     𝑇𝑐 < 𝑇𝐻
 < 𝑇𝐻   should be a possible 

equilibrium point. With  𝑕  and 𝑇𝑇
   chosen, the equation 

f(𝑥, 𝑢 )=0 can be written as 

      
1 1

𝑇𝑐 − 𝑥2 𝑇𝐻 − 𝑥2 
  

𝑢1 
𝑢2 

 =  𝐶𝐷𝐴0 2𝑔𝑥1  

0
           (15) 

The 2×2 matrix is invertible if TC not equal to TH. Hence 

as long as  TC not equal to TH, there is a unique equilibrium 

input for any choice of 𝑥2
^. It is given by : 

        𝑢1     =
𝐶𝐷𝐴0 2𝑔  𝑥1  𝑇𝐻−𝑥2  

𝑇𝐻−𝑇𝑐
                                    (16) 

 

 𝑢2 =
𝐶𝐷𝐴0 2𝑔 𝑥1  −𝑇𝐶+𝑥2  

𝑇𝐻−𝑇𝑐
                                    (17) 

As  ui represents flow rates into the tank, they are non-

negative real values due to physical restrictions.  This 

implies that  𝑥 ≥ 0 and TC ≤ 𝑇𝑇
   ≤ TH..The differential 

equation for TT , the tank temperature, implies that it is 

inversely proportional to the height of the tank . Hence, the 

differential equationof a model is valid while h(t) > 0, so we 

further restrict 𝑥1   > 0. Under those restrictions, the state 𝑥 ,   

is indeed an equilibrium point. 

 The necessary partial derivatives are given by : 

 

 
 
 
 
𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2 
 
 
 

=

 
 
 
 
 −

𝑔𝐶𝐷𝐴0

𝐴 2𝑔𝑥1

0

𝑢1 𝑇𝐶 − 𝑥2 + 𝑢2 𝑇𝐻 − 𝑥2 

𝑥1
2𝐴𝑇

− 𝑢1 + 𝑢2 

𝑥1𝐴𝑇  
 
 
 
 

 

 

          

 
 
 
 
𝜕𝑓1

𝜕𝑢1

𝜕𝑓1

𝜕𝑢2

𝜕𝑓2

𝜕𝑢1

𝜕𝑓2

𝜕𝑢2 
 
 
 

=

 
 
 
 

1

𝐴

1

𝐴
 𝑇𝐶 − 𝑥2 

𝑥1𝐴𝑇

 𝑇𝐻 − 𝑥2 

𝑥1𝐴𝑇  
 
 
 

 

 

In order to linearize the given system it is required that 

the matrices of partial derivatives be evaluated at the 

equilibrium points. 

 

          

III. CONTROLLER DESIGN 

 

Optimal control is used to minimize the performance 

index. A control law is synthesized using optimal control 

technique, which results in best possible behaviour of the 

system .Linear quadratic regulator (LQR) is one of the 

optimal control techniques, which takes into account the 

states of the dynamical system and control input to make 

the optimal control decisions. The control law is given by 

   𝑈 = −𝐾𝑋                                                                (18) 

where, X  is the states of the system and K is feedback gain 

matrix[8] and it is derived from minimization of the cost 

function  

   𝐽 =  (𝑋𝑇 𝑄𝑋 + 𝑈𝑇𝑃𝑈)𝑑𝑡                                       (19)     

where, Q and R are positive semi-definite and positive 

definite symmetric constant matrices respectively. The LQR 

gain vector K is given by 

 𝐾 = 𝑅−1𝐵𝑇𝑃                                                             (20) 

where, P is the solution of the Algebraic Ricatti 

Equation[10] - (21) 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0                             (21) 
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In the optimal control of mixing tank total temperature 

of the tank have been considered available for measurement 

which are directly fed to the LQR. The LQR is designed 

using the linear state-space model of the system. The 

optimal control value of LQR is given as a negative 

feedback along with the PID controller. The tuning of the 

PID controller and PID+LQR controller  is done by Zeigler 

Nicholas method[11]. 

 

IV. SIMULATION &  RESULT 

 

The MATLAB-SIMULINK models for the control of 

temperature and height of the mixing tank have been 

developed. The typical parameters of the reactor is selected 

as 𝑇𝐶  = 10
◦
, 𝑇𝐻 = 90

◦
,𝐴𝑇  = 3𝑚2 ,𝐴0  = 0.05m, constant 𝐶𝐷  = 

0.7. After linearization the system matrices used to design 

LQR are computed as below: 

 

A= 
−0.0258 0

0 −0.0517
  

 

B= 
0.333 0.333

−21.67 5
  

 

C= 0 1  
 

With the choice of 

Q= 
1 0
0 0

  

 

R= 
1 0
0 1

  

 

we obtain LQR gain vector as following:  

 

K= 
0,9079 −0.2295
0.2338 0.9495

  

the temperature response with LQR is shown in fig. 4 . 

 

Fig.4 Control of temperature with LQR 

        SIMULINK model of the system using two PID 

controllers having parameters, 

 

 

 

PIDControl 

schemes 
Height temperature 

KP 1.9438 1.45028 

KI 3.16 7.146180 

KD -0.0049493 -0.145766 

Table 1. PID controller parameters 

 

Fig.5 Block diagram of Two PID With LQR 

The response of above model is as shown in fig. 6. 

 

Fig.6 Response of  temperature with two PID and LQR 

 

Fig.7 Response of height with two PID and LQR 
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TIME DOMAIN 

SPECIFICATION 

2PID+LQR LQR 

RISE TIME 6.3053 21.6764 

SETTLING 

TIME 

17.7636 108.5134 

OVERSHOOT 0 9.6023 

UNDERSHOOT 0 0.8522 

PEAK 27.4006 12.5025 

PEAK TIME 57 63 

Table 2. Time Domain Specification Comparison 

             It is observed that the product temperature reaches 

the setpoint without overshoot and offset while using two 

PID and LQR. 

The setpoint tracking and disturbance rejection capability of 

the controller is verified by using the fig 7 

 

 

Fig 7. Block diagram of setpoint tracking and disturbance rejection of the 

system 

 

Its response is as shown in fig 8. 

 

Fig 8. Response for setpoint tracking and disturbance rejection 

                       

V. CONCLUSION 

 

PID with LQR controller, is used to control the effective 

temperature of a batch reactor. In order to compare the 

results initially system with only LQR is implemented and 

later on system with two PIDs with LQR is implemented. 
The MATLAB-SIMULINK models have been developed 

for the simulation of both control schemes. The simulation 

results justify that performance of two PID+LQR control 

scheme is better than LQR control scheme. Also it is 

verified that the system tracks the setpoint and rejects the 

disturbance in an effective manner. The performance 

investigation of this approach  with fuzzy controller may be 

done as a future scope of this work.  
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