
Cryptography Algorithm

Mithil P. Gharat

Department of Computer Engineering

Vidyalankar Institute of Technology

Mumbai,India

Prof. Dilip Motwani

Department of Computer Engineering

Vidyalankar Institute of Technology

Mumbai,India

Abstract— Use of battery operated mobile devices increasing

rapidly, use of computationally intensive cryptography

techniques are not much efficient on mobile devices. To

overcome this problem we are proposing modifications in Diffie-

Hellman key exchange by merging it with RSA algorithm. To

avoid man in the middle attack we try to encrypt the public

components of Diffie-Hellman key Exchange using RSA

Cryptosystem so they won’t be accessible for any eavesdropper

freely .RSA algorithm is used in this system also used to provide

platform for authentication for users connected through

insecure channels using Digital Signatures. This will also make

Algorithm more complex to break while keeping computational

complexity as low as possible.

Keywords— KI, IR, PKC, DDH, PSS.

I. INTRODUCTION

The encryption algorithm is the chain of calculations

that determine what ways the input plain text will be

transformed into the output cipher text. There are two types

of encryption: symmetric key encryption and public

(asymmetric) key encryption. Symmetric key and public key

encryption are used, often in conjunction, to provide a variety

of security functions for network and information security.

Encryption algorithms that use the same key for

encrypting and for decrypting information are called

symmetric-key algorithms. The symmetric key is also called

a secret key because it is kept as a shared secret between the

sender and receiver of information. Symmetric key

encryption is much faster than public key encryption, often

by 100 to 1,000 times. Because public key encryption places

a much heavier computational load on computer processors

than symmetric key encryption, symmetric key technology is

generally used to provide secrecy for the bulk encryption and

decryption of information.

Encryption algorithms that use different keys for

encrypting and decrypting information are most often called

public-key algorithms but are sometimes also called

asymmetric key algorithms. Public key encryption requires

the use of both a private key (a key that is known only to its

owner) and a public key (a key that is available to and known

to other entities on the network). A user's public key, for

example, can be published in the directory so that it is

accessible to other people in the organization. The two keys

are different but complementary in function. Information that

is encrypted with the public key can be decrypted only with

the corresponding private key of the set.

Performance is the primary concern so we try to

keep complexity and battery consumption to the minimum

level. . When performance is the primary concern,

programming in assembly language e may seem to be the

obvious choice, since coding in assembly provides control

over the processor. However, it is very easy to use the wrong

mix of instructions and the performance is often worse than

code generated by a good optimizing compiler.

We tried to analyse well known symmetric ciphers

AES, DES and Blowfish.

In case Advanced Encryption Standard Algorithm

(AES) [3]. Increasing the key size by 64 bits of AES leads to

increase in energy consumption about 8% without any data

transfer [4]. In case of AES it can be seen that higher key size

leads to clear change in the battery and time consumption. It

can be seen that going from 128-bit key to 192-bit causes

increase in power and time consumption about 8% and to

256-bit key causes an increase of 16%.

Data Encryption Standard Algorithm (DES) has a

relatively small 56-bit key which was becoming vulnerable to

brute force attacks. In addition, the DES was designed

primarily for hardware and is relatively slow when

implemented in software [6]. While Triple-DES avoids the

problem of a small key size, it is very slow even in software;

is unsuitable for limited-resource platforms, and may be

affected by potential security issues connected with the

(today comparatively small) block size of 64bits. The main

disadvantage of DES is it can be cracked within three days by

DES cracker.

Blowfish also improved from 224M memory size,

but became steady in 352M memory size. Researchers this is

because Blowfish function needs much more memory to

initialize sub-keys and S-boxes [10]. In all, the Blowfish

encryption algorithm will run 521 times to generate all the

sub keys - about 4KB of data is processed that’s why it takes

more time for large data. Blowfish have disadvantage in

decryption process over other algorithms in terms of time

consumption and serially in throughput.

We try to encrypt the public components because, The

Diffie-Hellman key exchange is vulnerable to a man-in-the-

middle attack. For Example an opponent Carol intercepts

Alice's public value and sends her own public value to Bob.

When Bob transmits his public value, Carol substitutes it with

215

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040348

Design of Power Efficient Symmetric

her own and sends it to Alice. Carol and Alice thus agree on

one shared key and Carol and Bob agree on another shared

key. After this exchange, Carol simply decrypts any messages

sent out by Alice or Bob, and then reads and possibly

modifies them before re-encrypting with the appropriate key

and transmitting them to the other party. This vulnerability is

present because Diffie-Hellman key exchange does not

authenticate the participants.

There are two publicly disclosed prime numbers known as

generator (g) and modulus (n) are used in Diffie-Hellman key

Exchange algorithm. If these two are exchanged among

parties using RSA encryption, then to find such Diffie-

Hellman Secret Key one has to break the RSA encryption.

Thus, it will be immensely difficult for an eavesdropper to

find the secret key, which can then be used by end users for

encryption and decryption purposes. Of course, RSA will be

employed for the User Authentication purpose as well. In this

fashion the computational complexity does not increase for

end users and at the same time data is also M*N times more

secure; M, N are the complexities of solving DLP (Discrete

Logarithm Problem) and Integer Factorization Problem

respectively.

II. ISSUES FOCUSED

There are four issues which are focused mainly to provide for

better security

A. Secure Key Exchange

Figure 1. Key Exchange.

In our own approach we do not wish to send encrypted
secret key along with encrypted data rather we try to generate
same secret key at both ends using Diffie-Hellman key
exchange policy. Moreover we exchange public components
of this algorithm keeping them encrypted with RSA
encryption decryption technique and therefore Secret Keys
are far from being hacked.

B. User Authentication

RSA algorithm is used in this system to provide platform

for authentication for users connected through insecure

channels using Digital Signatures. The RSA digital signature

process also uses private keys to encrypt information to form

digital signatures. For RSA digital signatures, only the public

key can decrypt information encrypted by the corresponding

private key of the set.

C. Degree of Security

While exchanging Diffie-Hellman public components

RSA is also used for user’s authentication. Hence, all Man in

the Middle attack can be brought to justice using Digital

Signatures as evidence.

Using Brute Force attack, if somebody tries to reveal the

secret key in computationally feasible time then he/she has to

not only solve Integer Factorization problem in feasible time

but also has to solve Discrete Logarithm problem at the same

time.

Figure 2. The set of combination of keys.

D. Computational Complexity

Simply if we look at the computational complexities of

both of RSA and Diffie-Hellman algorithm then we must

realize that it takes more time with keys of larger size than

that of smaller ones.

The algorithm will impose a computational complexity,

which is equal to the multiplication of these two above

mentioned algorithms because the public components of

Diffie-Hellman are protected by RSA public key encryption

III. ALGORITHM

There are three basic steps that constitute the whole
process of Data Encryption, Data Transfer, Data Decryption
and those steps are:

A. RSA Key Exchange

Step 1: Generate RSA public components at user A and

exchange those public components between user A &

user B.

Step 2.Generate RSA private key at user A

Step 3: Generate RSA public components at user B and

exchange those public components between user A &

user B.

Step 4.Generate RSA private key at user B

216

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040348

(User A will possess public key of user B and its own private

key. User B will possess public key of user A and its own

private key.)

B. Secure Key Exchange

Step1: Set p, g where p is a randomly chosen prime modulus
and g is the generator for user A.
Step2: Set x, where x is a randomly chosen large number

(This is the secret of user A).
Step3: Set Ka = g^x mod p.
Step4: User A encrypts g, p, Ka with the public key of the

intended recipient of the message and sends it to User B.
Step5: User B receives encrypted g, p and Ka, sent by user A.

User B then decrypts it and finds g, p and Ka.
Step6: Set y, a randomly chosen large number for user B.

Step7: Set Kb = g^y mod p. Set DHKey = (Ka) ^y mod p

Step8: User B encrypts Kb with the public key of User A.
Step9: User B then sends encrypted Kb to user A.

Step10: User A receives encrypted Kb, sent by user B.
Step11: User A decrypts it and finds Kb.
Step12: Set DHKey = (Kb) ^x mod p (DHKey is the secret

Diffie-Hellman key for user
(DHKey is the secret Diffie-Hellman key for user B).
Using TCP connection we can send and receive data and/or

keys generated through this algorithm.
As TCP is well known, it is out of the scope of this part of the

discussion to elaborate on how TCP can be used to exchange Keys

and/or encrypted data

C. Data Exchange

Step1: At first user data and/or application data (assume this

user as user A) is read from the system and converted into its

corresponding Byte- Code.

Step2: Now the Byte-Code is converted into its

corresponding big integer form.

Step3: Convert DHKey into Byte code and Convert it into

corresponding big integer form.

Step4. Divide the Data into Blocks of Key size.

Step5. Perform the Modulo 10 addition on each bit of data in

block with DHKey until all blocks are processed this will be

Encrypted message.

Step6: Transfer this message to User B.

Step7: User B performs Exact opposite operation to decrypt

the data.

TABLE I. ADDITION MODULO 10

IV. CONCLUSION

Using this algorithm we can encrypt and decrypt user

and/or application data very easily and the simplicity of this

algorithm is the soul of this algorithm though it creates

combinational complexity for a eavesdropper to decrypt the

cipher-text but for end users this algorithm never poses any

complex functional activity to perform. Without knowing the

Diffie-Hellman Key decryption of the cipher in this system is

analyzed further more. The hacker has to try all sort of

combination of the RSA and Diffie-Hellman key to find the

exact combination for the specific transmission. Moreover, as

we did not disclose the Public Components of Diffie-Hellman

Part (i.e. generator and the prime modulus) the eavesdropper

must have to break the RSA first to only find them and then

have to counter to find Diffie-Hellman Secret key. If it is

assumed that one 1024 bit RSA key to get broken through

brute force attack on a highly sophisticated processor with

great computational power, takes O (n) operations in an

average case and for a Diffie-Hellman key (1024 bit) the

same takes O (m) operations in average then for this

algorithm it will take O (n*m) operations to break a set of

keys. If m = n then we can say that to break a pair of keys

using Brute-Force Attack the complexity will rise up to

O(n^2).

REFERENCES

1. Ruangchaijatupon, P. Krishnamurthy, ''Encryption and Power

Consumption in Wireless LANs-N,’’ The Third IEEE Workshop on

Wireless LANs - September 27-28, 2001- Newton, Massachusetts.

2. J. Daemen, and V. Rijmen, “Rijndael: The advanced encryption

standard,” Dr. Dobb’s Journal, pp. 137-139, Mar. 2001.
3. R. Chandramouli, “Battery power-aware encryption,” ACM

Transactions on Information and System Security (TISSEC), vol. 9, no.

2, pp. 162-180, May 2006.
4. K. McKay, Trade-offs between Energy and Security in Wireless

Networks Thesis, Worcester Polytechnic Institute, Apr. 2005.

5. A. Nadeem, “A performance comparison of data encryption
algorithms,” IEEE Information and Communication Technologies, pp.

84-89, 2006. 460

6. P. Ruangchaijatupon, and P. Krishnamurthy, “Encryption and power
consumption in wireless LANs-N,” The Third IEEE Workshop on

Wireless LANs,pp. 148-152, Newton, Massachusetts, Sep. 27-28,

2001.
7. Bruce Schneier. The Blowfish Encryption Algorithm Retrieved

October 25, 2008, http://www.schneier.com/blowfish.html

217

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040348

8. A. Nadeem, “A performance comparison of data encryption

algorithms,” IEEE Information and Communication Technologies, pp.
84-89, 2006.

9. V. Denzer and A. Ecker, Optimal Multipliers for Linear Congruential

Pseudo-Random Number Generators with Prime Moduli. Behaviour &
Info Tech 28 (1988), pp-803.

10. J. H. Loxton, David S. P. Khoo, G. J. Bird and J. Seberry, A Cubic

RSA Code equivalent to factorization, J. Cryptology, 5 (1992), pp. 89-
150.

11. J. Stern, Advances in Cryptology EUROCRYPT'99, vol-1592, Lecture

Notes in Computer Science, (1999), pp. 223-238, Springer-
Verlag.

12. N. Koblitz and A. J. Menezes, A Survey of Public-Key Cryptosystems,

Mathematics of Computation, SIAM Review, 46 (2004), 599-634.
13. A. Nicolosi, M. Krohn, Y. Dodis, D Mazi`eres, Proactive Two-Party

Signatures for User Authentication, NDSS, (2003).

14. M. Bellare, S. Duan and A. Palacio, “Key Insulation and Intrusion
Resilience over a Public Channel”, Lect. Notes in Com. Sc. Vol. 5473,

M. Fischlin ed, Springer-Verlag, 2009.

15. M. Bellare, A. Boldyreva, A. Desai and D. Pointcheval, “Key-privacy

in public-key Encryption”, Adv. in Cryptology - Asiacrypt 2001

Proceedings, Lect. Notes in Com. Sc. Vol. 2248, C. Boyd ed,

Springer-Verlag, 2001.
16. D. Boneh , G. Durfee , “Cryptanalysis of RSA with private key d less

than N0.292 “, IEEE Tran. On Inf. Theo., Vol 46, No. 4, pp. 1339--

1349, July 2000
17. D. Boneh and R. Venkatesan, “Breaking RSA may not be equivalent to

factoring”, In Proceedings Eurocrypt '98, Lect. Notes in Com. Sc.,Vol.
1233, Springer-Verlag, pp. 59-71, 1998.

18. R. Canetti, H. Krawczyk, “Analysis of Key-Exchange Protocols and

Their Use for Building Secure Channels”., Eurocrypt, 2001. Long
version available at eprint.iacr.org/2001/040.

19. M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for

message authentication”, Adv. in Cryptology - Crypto 96 Proceedings,
Lect. Notes in Com. Sc.Vol. 1109, N. Koblitz ed, Springer-Verlag,

1996.

20. M. Abdalla, M. Bellare and P. Rogaway, “DHIES: An encryption
scheme based on the Diffie-Hellman Problem”, Lect. Notes in Com.

Sc.Vol. 2020, D. Naccache ed, Springer- Verlag, 2001.

218

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040348

