
Design of Two Variable Multiplier Using Vedic Mathematics and ROM

Approach

M.Ganesh Kumar
1
, I.V.Rameswar Reddy

2
, K.Kameswara Reddy

3

 1
PG Scholar, M.Tech VLSI, Department of ECE, AVR & SVR Engineering College, Kurnool

2
Associate Professor, Department of ECE, AVR & SVR Engineering College, Kurnool

 3
Assistant Professor, Department of ECE, AVR & SVR Engineering College, Kurnool

ABSTRACT:- This article presents the design of a

new high-speed multiplier architecture using

Urdhava Tiryagbhyam Sutra of Vedic mathematics

[1]. The architecture of this multiplier uses the

concept of Constant Coefficient Multiplier (KCM).

For KCM one input is fixed, while the proposed

multiplier can multiply two variables. In this

proposed method, the squares of numbers are

stored in ROM which makes the multiplication

faster. The multiplier circuit is synthesised and

simulated using Xilinx ISE 12.2 software and the

results are presented. The proposed multiplier is

compared with Array Multiplier for 16 bit, 32 bit

and 64 bit cases. In this article a layout has been

developed for 4x4 Urdhava Tiryagbhyam

Multiplier. The proposed multiplier is 1.5 times

faster than the other multipliers.

KEYWORDS:- Array Multiplier, KCM, Urdhava

Multiplier, Vedic Mathematics;

1. INTRODUCTION

Multiplication is a complex arithmetic operation,

which is rejected in its relatively high signal

propagation delay, high power dissipation and large

area requirement. When choosing a multiplier for a

digital system, the bitwidth of the multiplier is

required to be at least as wide as the largest

operand of the applications that are to be run on

that digital system. The bitwidth of the multiplier

is, therefore, often much larger than its operands,

which leads to excessive power dissipation and

long delay. This could partially be remedied by

having several multipliers, each with a specific

bitwidth, and using the particular multiplier with

the smallest bitwidth that is large enough for the

current multiplication.
A system's performance is generally

determined by the performance of the multiplier,

because the multiplier is generally the slowest

element in the system. Ever increasing performance

requirements make it challenging to implement

multipliers that are efficient in terms of throughput,

delay, power, and area for a wide range of

bitwidths.

2. ARRAY MULTIPLIER

In Array multiplier [2], AND gates are

used for generation of the bit-products and adders

for accumulation of generated bit products. All bit-

products are generated in parallel and collected

through an array of full adders or any other type of

adders. Since the array multiplier is having a

regular structure, wiring and the layout are done in

a much simplified manner. Therefore, among other

multiplier structures, array multiplier takes up the

least amount of area.

Example 1 describes the multiplication process

using array multiplier and Figure 2.l depicts the

structure of the same. A partial product enters at

the top, the Pij values are added, and a new partial

product emerges at the bottom, in carry-save form.

In an actual layout, successive rows would

probably be shifted to the right so that the adder

cells would form a perfect rectangular array.

Example 1: (1011 x 1101) = 10001111

 1 0 1 1

 1 1 0 1 x

 1 0 1 1

 0 0 0 0  Left Shift by 1 bit

 1 0 1 1  Left Shift by 2 bit

 1 0 1 1 Left Shift by 3 bit

 1 0 0 0 1 1 1 1

Here from the above example it is inferred that

partial products are generated sequentially, which

reduces the speed of the multiplier. However the

1952

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90752

structure of the multiplier is regular.

 Figure 2.1: The multiplier array of adder cells.

3. URDHAVA MULTIPLIER

Urdhava Tiryakbhyam [1][3] is a Sanskrit

word which means vertically and crosswire in

English. The method is a general multiplication

formula applicable to all cases of multiplication. It

is based on a novel concept through which all

partial products are generated concurrently. Fig. 2

demonstrates a 4 x 4 binary multiplication using

this method.

The method can be generalized for any N x N bit

multiplication. Due to its regular structure, it can

be easily layout in a silicon chip and also consumes

optimum area.

The line diagram in fig 2 illustrates the algorithm

for multiplying two 4-bit binary numbers
a3,a2,a1,a0 and b3,b2,b1,b0. The procedure is

divided into 7 steps and each step generates partial

products. Initially as shown in step 1 of fig2, the

least significant bit (LSB) of the multiplier is

multiplied with least significant bit of the

multiplicand (vertical multiplication). This result

forms the LSB of the product. In step 2 next higher

bit of the multiplier is multiplied with the LSB of

the multiplicand and the LSB of the multiplier is

multiplied with the next higher bit of the

multiplicand (crosswire multiplication).

These two partial products are added and

the LSB of the sum is the next higher bit of the

final product and the remaining bits are carried to

the next step. For example, if in some intermediate

step, we get the result as 1101, then 1 will act as

the result bit(referred as rn) and 110 as the carry

(referred as cn). Therefore cn may be a multi-bit

number. Similarly other steps are carried out as

indicated by the line diagram. The important

feature is that all the partial products and their sums

for every step can be calculated in parallel. Thus

every step in fig. 2 has a corresponding expression

as follows:

r0=a0b0. (1)

c1r1=a1b0+a0b1. (2)

c2r2=c1+a2b0+a1b1+a0b2. (3)

c3r3=c2+a3b0+a2b1+a1b2 + a0b3. (4)

c4r4=c3+a3b1+a2b2 +a1b3. (5)

c5r5=c4+a3b2+a2b3. (6)

c6r6=c5+a3b3 (7)

With c6r6r5r4r3r2r1r0 being the final product.

Hence this is the general mathematical formula

applicable to all cases of multiplication and its

hardware architecture is shown in fig. 3. In order to

multiply two 8-bit numbers using 4-bit multiplier

we proceed as follows. Consider two 8 bit numbers

denoted as AHAL and BHBL where AH and BH

corresponds to the most significant 4 bits, AL and

BL are the least significant 4 bits of an 8-bit

number. When the numbers are multiplied

multiplied according to Urdhava Tiryakbhyam

(vertically and crosswire) method, we get,

AH AL

BH BL

(AH x BH) + (AH x BL + BH x AL) + (AL x BL).

Thus we need four 4-bit multipliers and two adders

to add the partial products and 4-bit intermediate

carry generated. Since product of a 4 x 4 multiplier

is 8 bits long, in every step the least significant 4

bits correspond to the product and the remaining 4

bits are carried to the next step. This process

continues for 3 steps in this case. Similarly, 16 bit

multiplier has four 8 x 8 multiplier and two 16 bit

adders with 8 bit carry. Therefore we see that the

multiplier is highly modular in nature. Hence it

1953

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90752

leads to regularity and scalability of the multiplier

layout.

4. PROPOSED METHOD

The proposed method is based on ROM

approach however both the inputs for the multiplier

can be variables. In this proposed method a ROM

is used for storing the squares of numbers as

compared to KCM where the multiples are stored.

Method: To find (a x b), first we have to find

whether the difference between 'a' and 'b' is odd or

even. Based on the difference, the product is

calculated using (8) and (9).

i. In case of Even Difference

Result of Multiplication= [Average]
 2
- [Deviation]

 2

……………….. (8)

ii. In case of Odd Difference

Result of Multiplication = [Average x (Average +

1)] - [Deviation x (Deviation+ 1)]…….. (9)

Where, Average = [(a+b)/2] and Deviation =

[Average –smallest (a, b)]

Example 3 (Even difference) and Example

4 (Odd difference) depict the multiplication

process. Thus the two variables multiplication is

performed by averaging, squaring and subtraction.

To find the average [(a+b)/2], which involves

division by 2 is performed by right shifting the sum

by one bit. If the squares of the numbers are stored

in a ROM, the result can be instantaneously

calculated. However, in case of Odd difference, the

process is different as the average is a floating

point number. In order to handle floating point

arithmetic, Ekadikena Purvena - the Vedic Sutra

which is used to find the square of numbers end

with 5 is applied. Example 5 illustrates this. In this

case, instead of squaring the average and deviation,

[Average x (Average + 1)] - [Deviation x

(Deviation+ 1)] is used. However, instead of

performing the multiplications, the same ROM is

used and using equation (10) the result of

multiplication is obtained.

n(n+l) = (n
2
+n) ……………….... (10)

Here n
2
 is obtained from the ROM and is added

with the address which is equal to n(n+l). The

sample ROM contents are given in Table 4.1.

Table 4.1: Rom Contents

Thus, division and multiplication

operations are effectively converted to subtraction

and addition operations using Vedic Mathematics.

Square of both Average and Deviation is read out

simultaneously by using a two port memory to

reduce memory access time.

Example 3: 14 x 10 = 140

1) Find the difference between (14-10) = 4  Even

Number

2) For Even Difference, Product = [Average]
 2
-

[Deviation]
 2

i. Average = [(a+b)/2] = [(14+10)/2] = [24/2] = 12

ii. Smallest (a,b) = smallest(l4,10) =10

iii. Deviation = Average - Smallest (a,b) = 12 -10

=2

3) Product = 12
2
- 2

2
= 144 - 4 = 140

Example 4: 17 x 14 = 238

1) Find the difference between (17-14) = 3 Odd

Number

2) For Odd Number Difference, Product =

[Average x (Average + 1)] - [Deviation x

(Deviation+ 1)].

i. Average = [(a+b)/2] = [(17+14)/2] = 15.5

ii. Deviation = [Average – smallest (a, b)] = [15.5 –

smallest (l7, 14)] = [15.5 - 14] = 1.5

3) Product = (l5x16) - (lx2) = 240 - 2 =238

1954

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90752

Example 5: 25
2
= 625

1) To find the square of 25, first find the square of

5 which is 25 and put 2 in the tens place and 5 in

the ones place of the answer respectively.

2) To find the number in the hundreds place,

multiply 2 by its immediate next number, 3, which

is equal to (2x3) = 6

3) Answer 25
2
= 625

5. RESULTS

Figure 5.1: 64 bit proposed multiplier

Fig 5.2: 16 bit binary multiplication using proposed

method.

Fig 5.3: 32 bit binary multiplication using proposed

method.

Fig 5.4: 64 bit binary multiplication using proposed

method.

1955

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90752

SYNTHESIS RESULTS:

Fig 5.5: Top Module I

Fig 5.6: Top Module II

Fig: 5.7 Top Module III

Fig 5.8: Layout

6. CONCLUSIONS

Thus the proposed multiplier provides

higher performance for higher order bit

multiplication. In the proposed multiplier for higher

order bit multiplication i.e. for 16x16 and more, the

multiplier is realized by instantiating the lower

order bit multipliers like 8x8. This is mainly due to

memory constraints. Effective memory

implementation and deployment of memory

compression algorithms can yield even better

results.

Ancient Indian system of mathematics,

known as Vedic mathematics, can be applied to

various branches of engineering to have a deeper

insight into the working of various formulae. The

algorithms based on conventional mathematics can

be simplified and even optimized by the use of

Vedic Sutras. One such possible application of

Vedic mathematics to digital signal processing has

been discussed. A simple Vedic multiplier

architecture based on the Urdhava Tiryagbhyam

(Vertically and Cross wise) Sutra of Vedic

mathematics has been presented. The hardware

architecture of the Vedic multiplier is also depicted

and is found to be very similar to that of the so

called array multiplier. This is just one of the many

possible applications of the Vedic Mathematics to

Engineering and some serious efforts are required

to fully utilize the potential of this interesting field

for the advancement of Engineering and

Technology. Although, Vedic mathematics

provides many interesting Sutras, but their

application to the field of engineering is not yet

fully studied. Hence, the vast potential of this

interesting field should be exploited to solve the

real world problems efficiently.

1956

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90752

7. REFERENCES
[1] Swami Bharati Krshna Tirthaji, Vedic

Mathematics. Delhi: Motilal Banarsidass

Publishers, 1965.

[2] K.K.Parhi "VLSI Digital Signal Processiong

Systems -Design and Implementation" John

Wiley & Sons, 1999.

[3]Harpreet Singh Dhillon and Abhijit Mitra "A

Digital Multiplier Architecture using Urdhava

Tiryakbhyam Sutra oj Vedic Mathematics" IEEE

Conference Proceedings,200S.

[4] Asmita Haveliya "A Novel Design ./i)r High

Speed Multiplier .fi)r Digital Signal Processing

Applications (Ancient Indian Vedic mathematics

approach)" International Journal of Technology

And Engineering System(IJTES):Jan - March

2011- Vo12 .Nol

[5] Raminder Preet Pal Singh, Parveen Kumar,

Balwinder Singh "Perfimnance Analysis of'32-Bit

Array Multiplier with a Carry Save Adder and with

a Carry-Look-Ahead Adder" International Journal

of Recent Trends in Engineering, Vol 2, No.6,

November 2009

[6] Parth Mehta, Dhanashri Gawali

"Conventional versus Vedic mathematical method

Jor Hardware implementation oj a multiplier" 2009

International Conference on Advances in

Computing, Control, and Telecommunication

Technologies

[7] Prabir Saha, Arindam Banerjee, Partha

Bhattacharyya, Anup Dandapat ""High Speed

ASIC Design of Complex Multiplier Using Vedic

Mathematics" Proceeding of the 2011 IEEE

Students' Technology Symposium 14-16 January,

20 II, liT Kharagpur

[8] H. D. Tiwari, G. Gankhuyag, C. M. Kim, and

Y. B. Cho, "Multiplier design based on ancient

Indian Vedic Mathematics," in Proceedings IEEE

International SoC Design Cotiference, Busan,

Nov. 24-25, 200S,pp.65-6S

[9] H. Thapliyal, M. B. Srinivas and H. R.

Arabnia , "Design And Analysis oj a VLSI

Based High PerJormance Low Power Parallel

quare Architecture", in Proc. Int. Conf. Algo.

Math. Compo Sc. , Las Vegas, June 2005, pp. 72-

76.

[10] P. D. Chidgupkar and M. T. Karad, "The

Implementation oj Vedic Algorithms in Digital

Signal Processing", Global J. oj /c'ngg. /c'du.,

vol. 8, no.2, pp. 153-158, 2004.

[11] H. Thapliyal and M. B. Srinivas, "High

Speed Efficient N x N Bit Parallel Hierarchical

Overlay Multiplier Architecture Based on

Ancient Indian Vedic Mathematics", EnJormatika

Trans., vol. 2, pp. 225-22S, Dec. 2004.

[12] Wakerly, J.F. "Digital Design-Principles and

Practices", 2006, 4th Edition. Pearson Prentice

Hall.

[13] J. Bhasker, "Verilog HDL Primer" BS P

Publishers, 2003.

[14] Himanshu Thapliyal, S. Kotiyal and M.B.

Srinivas, "Design and Analysis (Jf a Novel

Parallel Square and Cube Architecture Based on

Ancient Indian Vedic Mathematics", Proceedings

on 48th II/c'/c'/c' International Midwest

Symposium on Circuits and Systems (MWSCAS

2005)

[15] Himanshu Thapliyal and Hamid R. Arabania,

"A Time- Area Power Efficient Multiplier and

Square Architecture Based on Ancient Indian

Vedic Mathematics", proceedings on VLSI04, Las

Vegas, U. S. A, June 2004

[16] J M. Ramalatha, K. Deena Dayalan, P.

Dharani, S. Deborah Priya, "High Speed Jc'nergy

ElJzcient AL U Design using Vedic Multiplication

Techniques", ACTEA 2009, Zouk Mosbeh,

Lebanon

[17] Pau1.B.C., Fujita.F.S., Okajima.M., "ROM

Based Logic (RBL)

Design: A Low-Power 16 Bit Multiplier', IEEE

Jouna! of Solid State

Circuits, Volume 44, Issue II, Pg. 2935-2942, Nov

2009.

1957

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90752

