

 Design Pattern Detection by Greedy Algorithm Using Inexact

Graph Matching
1Rajwant Singh Rao, 2Manjari Gupta

1Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 2 Banaras Hindu University Varanasi

Abstract

Design Patterns are proven solution to common

recurring design problems. Design Pattern

Detection is most important activity that may

support a lot to re-engineering process and thus

gives significant information to the designer.

Knowledge of design pattern exists in the system

design improves the program understanding and

software maintenance. Therefore, an automatic and

reliable design pattern discovery is required.

Graph theoretic approaches have been used for

design pattern detection in past. Here we are

applying an algorithm which decomposes the graph

matching process into K phases, where the value of

K ranges from 1 to the minimum of the numbers of

nodes in the two graphs to be matched. The

effectiveness of this algorithm results from the use

of small values of K, and significantly reduces the

search and space and producing very good

matching between graphs. The same algorithm we

are here using for design pattern detection from the

system design.

Keywords—design pattern, UML, matching, sub

graph isomorphism, bijective, error matching.

1. Introduction

Graph based approached have been used in

many software engineering problems. Design

Patterns are proven solutions for common recurring

software design problems. The design patterns have

been extensively used by software industry to reuse

the design knowledge [1]. During maintenance of a

software system the necessary tasks are to

understand and modify it. It would be helpful to

discover pattern instances in it, if any. Many

algorithms have been proposed for design patterns

detection like [2, 3, 4, 5]. Similar works on design

pattern detection have been discussed in section 2.

 This paper presents a design pattern detection

technique by greedy algorithm using a graph

matching algorithm. Here, the graphs are

corresponding to the relationship graphs which

exist in the UML diagrams of system design

(model graph or system under study) as well as in

UML diagrams of design patterns. In the classic

concept of exact graph matching, the aim is to

determine whether two graphs are the same or

whether a subgraph of one exists in the other. In

practical applications, objects are often affected by

noise and distortion, so using exact graph matching

often fails to find the appropriate solution. One way

to handle with noisy data is to use inexact graph

matching. The objective is to find a (sub) graph

isomorphism that tolerates distortions; this is

known as an error-correcting or error-tolerant (sub)

graph isomorphism [7].

 The algorithm is based on the greedy

algorithm. A greedy algorithm always makes the

choice that looks best at the moment. That is it

makes a locally optimal choice in the hope that this

choice will lead to go a globally optimal solution.

In this way it gives the best matching between both

of the model graph and design pattern graph. Here

we decomposes the matching process into K

phases, where the value of K ranges from 1 to the

minimum of the numbers of nodes in the two

graphs to be matched. The efficiency of the new

algorithm results from the use of small values of K,

which significantly reduces the search space while

still producing very good matchings (most of them

optimal) between graphs [7]. The outline of this

paper is as follows. In section 2 related works are

discussed. Section 3 explains the representation of

model graph and design patterns in terms of

relationship graphs is explained. The graph

matching algorithm is described in section 4. In

section 5 the design pattern detection is described

using some examples. Lastly we concluded in

section 6.

2. Related Work

The first attempt for automatically detecting

design pattern was by Brown [8]. In this work,

Smalltalk code was reverse-engineered to facilitate

the detection of four well-known patterns from the

catalog by Gamma et al. [1]. Antoniol et al. [9]

developed a technique to identify structural patterns

in a system to observe how useful a design pattern

recovery tool could be in program understanding

and maintenance. Nikolaos Tsantalis [2] proposed a

methodology for design pattern detection using

similarity scoring. However, the limitation of

similarity algorithm is that it only calculates the

3658

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101152

similarity between two vertices, not the similarity

between two graphs. Jing Dong [3] gave another

approach called template matching, which

calculates the similarity between sub graphs of two

graphs instead of vertices, to solve the above

limitation. S. Wenzel [4] purposed a difference

calculation method works on UML models. The

advantage of difference calculation method on

other design pattern detecting technique is that it

detects the incomplete pattern instances also.

Bergenti and Poggi [10] developed a method that

examines UML diagrams and proposes the

software architect modifications to the design that

lead to design patterns. In our earlier work, we used

several graph matching techniques to detect design

patterns [12-].

3. Relationship Graphs Representation

 The UML diagram of the system design as well as

design pattern in converted into graphs. Classes of

UML diagram are represented as nodes and

relationships among classes by edges. Each node

and edge is labelled. The label of each node is 3-

tuple (t1, t2, t3) where t1 is number of super classes,

t2 is number of sub classes, and t3 is number of

collaborators of this node (class). It can be

modified to include more other attributes of a class.

In this initial effort we are considering only three

attributes of a class. Each edge is corresponding to

one of the relationships. We assign label 1 for

dependency, 2 for generalization, 3 for direct

association, and 4 for aggregation. For the system

design represented by the UML Diagram shown in

Fig. 1, the corresponding graph (MG) is extracted

and shown in fig 2. In this paper, we consider this

graph as a model graph of system design.

Fig. 1. UML Diagram of system design [11]

Fig. 2. Model graph corresponding to system design

4. Graph Matching Algorithm
The graph matching algorithm [6, 7] determines

whether two graphs are the same or whether a

graph is a subgraph of the other or whether a

subgraph of one exists in the other. Given two

graphs, the aim is to find the matching between

their nodes and edges that leads to the minimum

matching error between two graphs. This error is

defined as the dissimilarity between each pair of

matched nodes, plus the dissimilarity between

corresponding edges. It can be viewed as the

distance between the two graphs. In this algorithm

the first part of matching error can be found by

summing the matching errors of the node mapping.

The second part of matching error is error in edge

mapping. The basic idea of the new algorithm is to

iteratively explore the possible node mappings and

to select the best mapping at each iteration phase.

The essential assumption behind this algorithm is

that in order to obtain a good (or optimal) matching

between two graphs, one should match similar

nodes and corresponding relationships in the two

graphs.

A. Algorithm description

Given two graphs, design pattern graph DPG =

(V1, E1, u1, v1) and model graph MG = (V2, E2, u2,

v2), where V1, V2 are set of nodes, E1, E2, are set of

edges, u1, u2 are functions assigning labels to nodes

and v1, v2 are functions assigning labels to edges in

DPG and MG respectively.

To extract the most promising mapping, an nm

matrix P = (pij) is introduced, where n and m are

the numbers of nodes in the DPG and MG,

respectively. Each element pij in P denotes the

dissimilarity between node i in G1 and node j in G2.

In order to extract promising mappings, we use a

second nm matrix B = (bij) whose elements

represent promising node-to-node mappings. The

algorithm first initializes matrix P by setting pij = d

3659

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101152

(m1 (vi), m2 (vj)), where pij is distance between vi

and vj. In the first phase of iteration, the algorithm

initializes matrix B by setting most elements to zero

(bij= 0) and the others to 1, depending on their

corresponding values in matrix P. Specifically, for

each row in matrix B, the elements corresponding

to the minimum elements in the same row of matrix

P will be set to 1. Then, for each possible mapping

extracted from B, the algorithm computes the error

generated by nodes and the error generated by

edges. The mapping that gives rise to the smallest

matching error will be recorded. In the second

phase, the algorithm will reset some elements in

each row of matrix B to 1, specifically, those

elements that correspond to the second-smallest

elements in each row of matrix P. The algorithm

will extract those isomorphisms from matrix B that

contain at least one node-to-node matching added

to matrix B at this phase. Of these isomorphisms

and those obtained in the first phase, those with the

smallest cost are retained. The algorithm then

proceeds to the next phase and so on [6].

A matrix B' is introduced to keep a copy of all

possible node-to-node matchings that have been

considered by the algorithm so far. B is used as a

‘temporary’ matrix. At each phase (except the

first), each of the n rows of B is examined

successively. For each row i of B, all of the

previous rows of B will contain all of the possible

node-to-node matchings examined so far. Row i

contains only the possible node-to-node matchings

in the present phase. Finally, all of the following

rows of B will contain only the possible node-to-

node matchings examined in the previous phases.

Such a matrix B guarantees that the isomorphisms

extracted as the algorithm progresses will never be

the same and that all of the isomorphisms that need

to be extracted at each phase will indeed be

extracted [7].

The algorithm is given below

 Input: DPG and MG.

Output: matching between nodes in DPG and

MG,

1. Initialize P as follows:

 For each pij, set pij= d (m1 (vi), m2 (vj)).

2. Initialize B as follows:

 For each bij , i =1,..., n and j = 1,...,m , set bij = 0

.

3. While Current _ Phase < K

 If Current _ Phase = 1,

 Then for all i = 1,..., n

 select the element with the smallest value

in

 P that is not marked 1in B and set it to 1

in B;

 call Matching_Nodes(B).

 Else for all i = 1,..., n

 set B’ = B

 for all j =1,...,m set bij = 0

 select the element with the

smallest

 value in P that is not marked 1 in

B’

 and set it to 1 in B and B’;

 call Matching_Nodes(B);

 set B = B’.

 If all elements in B are marked 1,

 Then set Current _ Phase = K

 Else add 1 to Current_Phase.

End

Procedure: Matching_Evaluation(B)

For each valid mapping in B

1.Compute the matching error generated by

nodes that is difference between matched nodes i.e.

|MGt1-DPGt1|+ |MGt2-DPGt2|+ |MGt3-DPGt3|, where

MGti is the ith component of the label of node in

model graph and DPGti is the ith component of the

label of matched node in the design pattern graph.

2. Add the error generated by the corresponding

edges to the matching error. We take difference

between labels of matched edges. If it is 0 then this

part of matching error is 0 since both edges are

corresponding to same relationship, otherwise we

will set edge matching error to q where q is a very

large positive number to show that edges are not

corresponding to same relationship.

3. Save the actual matching if the matching error

is minimal.

5. Design Pattern Detection Using Graph

Matching algorithm

The There are 23 GoF (Gang of Four) [1]

design patterns. UML diagrams can be drawn for

each of the corresponding design patterns. Here we

are considering some of them. After checking sub

isomorphism between the relationship graphs of a

design pattern and the model graph, there may be

three cases:

i) Relationship graph of a design pattern is (sub)

isomorphic to the model graph.

ii) Relationship graph of a design pattern is

partially (sub) isomorphic to the model graph.

3660

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101152

iii) Relationship graph of a design pattern is not

sub isomorphic to the model graph.

In the case i) design pattern exist in model

graph. In the case ii) design pattern partially exists

in the model graph. In the case iii) design pattern

does not exist in the model graph. All these cases

are described in detail by using examples.

A. Design Pattern Detection as Strategy

Design Pattern: Exact Matching

 Firstly, we are considering strategy design

pattern, the UML diagram and corresponding

labelled graph (DPG) is shown in Fig. 3 and Fig. 4

respectively. In this case we find at least one

minimum error (without having q) bijective

matching such that for all matched nodes there

corresponding edges are same.

Fig. 3. Strategy Design Pattern [11]

Fig. 4. DPG for strategy design pattern

Considering the DPG (Fig. 4) and MG (Fig. 2)

the matrix P, in form of matching errors of nodes,

shown in following Table 1.
Table 1. Matrix P

0,1,1 0,1,1 1,1,0 1,1,0 2,1,1 3,2,1

1,3,2 1,1,0 0,1,1 0,1,1 1,1,2 2,0,2

1,3,2 1,1,0 0,1,1 0,1,1 1,1,2 2,0,2

After adding the matching errors of each cell, the

final matrices P and B for phase 1 are shown in

table 2 and table 3 respectively.

Table 2. Matrix P

2 2 2 2 4 6

6 2 2 2 4 4

6 2 2 2 4 4

Table 3. Matrix B / Phase 1

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

From the matrix in Table 3, the matching

{(DPGA, MGA), (DPGB, MGB), (DPGC, MGB)} will

be extracted but this is not bijective, so it will not

be considered for the further exploration. In phase

2, matrices B and B' will be as follows at step 1:

Table 4. Matrix B Step 1 /Phase 2 And Matrix B'

Step 1 /Phase 2

Here the matching {(DPGA, MGB), (DPGB,

MGB), (DPGC, MGB)} is extracted which is not

bijective, so it will also not be considered for

exploration.
 Table 5. Matrix B Step 2 /Phase 2 And Matrix B'

Step 2 /Phase 2

In step 2 matchings {(DPGA, MGA), (DPGB,

MGC), (DPGC, MGB)} and {(DPGA, MGB), (DPGB,

MGC), (DPGC, MGB)} are extracted but only the

first matching is bijective and its matching error is

(6+q).

Table 6. Matrix B Step 3 /Phase 2 And Matrix B' Step

3 /Phase 2

In step 3 the only one matching {(DPGA, MGA),

(DPGB, MGB), (DPGC, MGC)} is bijective and the

matching error is (6+q).

 At step 1 of phase 3, matrices B and B' are as

follows:

3661

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101152

Table 7. Matrix B Step 1 /Phase 3 And Matrix B' Step

1 /Phase 3.

From table 7 no bijective matching will be

extracted.

Table 8. Matrix B Step 2 /Phase 3 And Matrix B' Step

2 /Phase 3

 In step 2 of phase 3, the bijective matchings are

{(DPGA, MGA), (DPGB,MGB), (DPGC, MGB)},

{(DPGA, MGA), (DPGB, MGD), (DPGC, MGC)},

{(DPGA, MGB), (DPGB, MGD), (DPGC, MGC)} and

{(DPGA, MGC), (DPGB, MGD), (DPGC, MGB)},

and the matching error of these matchings are

(6+q), (6+q), (6+q) and (6+q) respectively.

Table 9. Matrix B Step 3 /Phase 3 And Matrix B' Step

3 /Phase 3.

In step 3 of pase 3, the bijective matchings are

{(DPGA, MGA), (DPGB,MGB), (DPGC, MGD)},

{(DPGA, MGA), (DPGB, MGC), (DPGC, MGD)},

{(DPGA, MGB), (DPGB, MGC), (DPGC, MGD)} and

{(DPGA, MGC), (DPGB, MGB), (DPGC, MGD)},

and the matching error of these matchings are

(6+q), 6, (6+q) and (6+q) respectively. Thus here

according to greedy algorithm we can see, the

matching {(DPGA, MGA), (DPGB, MGC), (DPGC,

MGD)} has the minimum error and also all the

matching nodes and their corresponding edges are

same in DPG and MG, so the strategy design

pattern completely exist in the model graph.

B. Design Pattern Detection as Command

Design Pattern: Partial Matching

In some cases it is also possible that a particular

design pattern partially exist in the system design

pattern (case ii discussed in section 4). For example

consider the command design pattern, the UML

diagram and corresponding labelled graph (DPG) is

shown in Fig. 5 and Fig. 6 respectively. In this case

we will not find any minimum error (without

having q) bijective matching such that for all

matched nodes there corresponding edges are same.

Minimum matching error in this case would always

have q in its expression since for at least one

relationship between two matched nodes of DPG

will not match the relationship between

corresponding nodes in MG.

Client Invoker
Command

+Execute()

ConcreteCommand

Receiver

+Action() +receiver

Fig. 5. Command Design Pattern [11]

Fig. 6. DPG of command design pattern.

By considering DPG (Fig. 6) and MG (Fig. 2),

the matrix P in form of matching errors of nodes is

shown in following Table 1.

Table 10. Matrix P

After adding the matching errors of each cell the

final matrices P and B for phase 1 are shown in

tables 11 and table 12 respectively.

Table 11. Matrix P

3662

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101152

Table 12. Matrix B / phase 1

From the matrix in Table 12, we are not getting

any bijective matching.

In phase 2, matrices B and B' will be as follows

at step 1:

Table 13. Matrix B Step 1 /Phase 2 And Matrix B'

Step 1 /Phase 2.

In this step no bijective matching is found.

Similarly for step 2/phase 2 there will not be any

bijective matching.

Table 14. Matrix B Step 3 /Phase 2 And Matrix B'

Step 3 /Phase 2.

In step 3 the bijective matchings are {(DPGA,

MGB), (DPGB, MGE), (DPGB, MGC), (DPGD,

MGA), (DPGE, MGC)} and their matching errors

are same i.e. (8+q).

Similarly, if we proceed further, we will find

that for all the bijective matchings that we will get,

the matching error is (8+q). That is in those

mappings, some of the matching nodes have same

corresponding edges while for some of the

matching nodes corresponding edges are not same

in MG and DPG. Thus in this case command

design pattern partially exists in the model graph.

C. Particular design pattern may not exist

Above we have seen the examples of design

pattern existence (complete or partially) but it can

be possible that a particular design pattern does not

exist in the model graph. In this case we will not

find any minimum error (with or without having q)

bijective matching such that even for few numbers

of matched nodes there corresponding edges are

same.

For example if we take singleton design pattern

(Fig. 7), there is only one relationship: direct

association on itself node. Corresponding DPG is

shown in Fig. 8.

Singleton

+Instance(): Singleton -instance

 Fig. 7. Singleton Design Pattern [11]

Fig. 8. DPG of Singleton design pattern

Consider DPG (Fig. 8) and MG (Fig 2) the

matrix P, in form of matching errors of nodes are

shown in Table 15.
Table 15. Matrix P

0,3,3 0,1,1 1,1,2 1,1,2 2,1,3 3,0,3

After adding the matching errors of cell, the final

Matrix P and B for phase 1 are shown in tables 16

and 17, respectively.
Table 16. Matrix P

6 2 4 4 6 6

Table 17. Matrix B / Phase 1

0 1 0 0 0 0

From the matrix in Table 17, there will be

bijective matching {(DPGA, MGB)} and its

matching error is (2+q). Since for the matched

node, no corresponding edge is found so singleton

design pattern does not exist in the model graph.

6. Conclusions

This paper presents an approach for design

pattern detection using error correcting

representation of graph matching. We took the

relationship graphs of the model graph (MG) and a

design pattern (DPG), after that the graph matching

algorithm is applied on both of the graphs and tried

3663

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101152

to find out the bijective matching. If for this

bijective matching, the matched nodes have the

corresponding edges, we say that the design pattern

exist in the model graph. If for the matched node

no corresponding edges are found, design pattern

does not exist in the model graph, and if for the

matched nodes some of the corresponding edges

are found and some are not found, we say that

design pattern partially exists in the model graph.

The advantage of this approach [6, 7] is that it

reduces the search space and produce very good

matchings (most of them optimal) between graphs.

In general, the (worst) complexity of the algorithm

depends on the number of phases (value of K) used

by the algorithm. For a given value K (m),

each row in matrix B has K elements marked 1 and

there are K n node-to-node mappings to be

extracted. To check the edge-to-edge mappings, the

algorithm needs O (n2) steps for each mapping.

Thus, the complexity of the algorithm is O (n2K n)

[6, 7]. We are trying to develop a prototype that

allows the implementation of the algorithm

discussed.

References

[1] E. Gamma, R. Helm, R. Johnson, J.Vlissides,

Design Patterns Elements of Reusable Object-

Oriented Software, Addison- Wesley, 1995.

[2] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides,

and S. Halkidis, Design Pattern Detection

Using Similarity Scoring, IEEE transaction

on software engineering, 32(11), 2006.

[3] Jing Dong, Yongtao Sun, Yajing Zhao, Design

Pattern Detection by Template Matching, the

Proceedings of The 23rd Annual ACM

Symposium on Applied Computing (SAC),

pages 765-769, Ceará, Brazil, March 2008.

[4] S. Wenzel and U. Kelter. Model-driven design

pattern Detection using difference calculation. In

Proc. of the 1st International Workshop on

Pattern Detection for Reverse Engineering

(DPD4RE), Benevento, Italy, October 2006.

[5] G. Antoniol, G. Casazza, M. Di Penta, and R.

Fiutem, Object-Oriented Design Patterns

Recovery,” J. Systems and Software, vol. 59, no.

2, pp. 181-196,2001.

[6] Adel Hlaoui, Shengrui Wang, "A New

Algorithm for Inexact Graph Matching," Pattern

Recognition, 16th International Conference on

Pattern Recognition (ICPR'02) - Volume 4,

2002.

[7] Adel Hlaoui and Shengrui Wang, “A Node-

Mapping-Based Algorithm for Graph

Matching”, Sciences/DI, Université de

Sherbrooke, Sherbrooke, Québec, Canada J1K

2R1

[8] K. Brown, “Design Reverse-Engineering and

Automated Design Pattern in Smalltalk,”

Technical Report TR-96-07, Dept. of Computer

Science, North Carolina State Univ., 1996.

[9] G. Antoniol, G. Casazza, M. Di Penta, and R.

Fiutem, Object-Oriented Design Patterns

Recovery,” J. Systems and Software, vol. 59, no.

2, pp. 181- 196,2001.

[10] F. Bergenti and A. Poggi, “Improving UML

Designs Using Automatic Design Pattern

Detection,” Proc. 12th Int’l Conf. Software Eng.

and Knowledge Eng. (SEKE ’00), July 2000.

[11] StarUML, The Open Source UML/MDA

Platform.

[12] Pande A., Gupta M., “Design Pattern Detection

Using Graph Matching”, International Journal of

Computer Engineering and Information

Technology (IJCEIT), Vol 15, No 20, Special

Edition, pp. 59-64, 2010.

[13] Pande A. & Gupta M., “Design Pattern Mining

for GIS Application using Graph Matching

Techniques”, 3rd IEEE International Conference

on Computer Science and Information

Technology. pp. 09-11, Chengdu, China, 2010.

[14] Gupta M., Singh R.R., Pande A., Tripathi A.K.,

“Design pattern Mining Using State Space

Representation of Graph Matching”, 1st

International Conference on Computer Science

and Information Technology, Banglore, 2011, to

be published by LNCS, Springer.

[15] Gupta M. Singh R.R., Tripathi A.K., “Design

Pattern Detection using Inexact Graph

Matching”, International Conference on

Communication and Computational Intelligence,

Tamilnadu, Dec 2010, to be published by IEEE

Explore.

[16] Gupta M., “Inexact Graph Matching for Design

Pattern Detection using Genetic Algorithm”,

International Conference on Computer

Engineering and Technology, Nov 2010,

Jodhpur, to be published by IEEE Explore.

[17] Manjari Gupta, Akshara Pande, Rajwant Singh

Rao, A.K. Tripathi, Design Pattern Detection by

Normalized Cross Correlation, International

Conference on Methods and Models in

Computer Sciences (ICM2CS-2010), December

13-14, 2010, JNU, to be published by IEEE

Explore.

[18] Manjari Gupta (2011), Design Pattern Mining

Using Greedy Algorithm for Multilabeled

Graphs, International Joint Conference on

Information and Communication Technology, 8-

9 Jan, 2011, Bhubaneshwar, to be published by

IPM Pvt. Ltd, India.

http://staruml.sourceforge.net/en/

3664

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101152

