
Designing Resilient Systems: A Guide to

Distributed Caching for Modern Applications

Distributed caching optimizes data retrieval by storing

data closer to the application. However, it is not designed

to replace traditional databases but rather to complement

them. Distributed caches offer faster access to frequently

used data, making them ideal for low-latency applications.

The cost of memory for caches is generally higher than the

compute cost for databases, which makes it impractical to

use caching for all data. Moreover, the complexity of

managing sharding and maintaining consistency across

cache nodes adds additional challenges.

Instead, distributed caches enhance performance by

storing the most frequently accessed data, reducing the

load on primary databases. Writing all updates to the

database ensures data durability and provides a mechanism

to reconstruct the cache when needed. Additionally,

distributed caching solutions like Redis and Memcached

support snapshot features, enabling data recovery and

cache population during restarts or failures. A well-

designed strategy integrates distributed caching with

databases, leveraging the strengths of both to deliver

reliable and scalable systems.

Abstract – Distributed caching has emerged as a cornerstone

for optimizing performance and scalability in cloud-based

and microservice architectures. As applications grow in

complexity and user expectations increase, ensuring fast,

reliable access to data becomes a critical challenge.

Distributed caching addresses these challenges by

storing frequently accessed data in-memory, closer

to the application, thereby reducing latency, backend

load, and operational costs. However, distributed

caching is not a replacement for traditional

databases; instead, it complements them by enabling

low-latency data access for high-demand use cases while

maintaining durability and consistency through

database integration. This article examines the

principles of distributed caching, outlines effective

strategies for its implementation, and provides a

comparative analysis of popular tools like Redis,

Memcached, and AWS ElastiCache to guide developers

in selecting the most suitable solution for their needs.

Keywords – Microservice, Distributed System, Cache,

High Performance Computing

I. INTRODUCTION

In the realm of modern cloud-native architectures, the

demand for low-latency applications has never been

higher. Distributed systems and microservices have

become standard, but with this shift comes the challenge

of ensuring fast and reliable access to data. Performance

bottlenecks, data inconsistency, and scalability constraints

are common hurdles as applications scale. Traditional

centralized databases often struggle to handle the high

read and write loads generated by distributed systems,

resulting in latency and degraded user experience.

Furthermore, geographically distributed users exacerbate

these issues with network-induced delays, while frequent

database access drives up operational costs.

Distributed caching provides a powerful solution by

storing frequently accessed data closer to the application,

reducing the dependency on databases and enhancing

responsiveness. By leveraging in-memory storage,

distributed caching ensures that applications can handle

high traffic with minimal delays, addressing performance

and scalability challenges head-on. This article explores

the principles and strategies for effective caching in

modern architectures and compares tools like Redis,

Memcached, and AWS ElastiCache to guide the selection

process for specific use cases. This article delves into the

core principles of distributed caching, examining its

relevance in modern architectures, common pitfalls, and

best practices. We’ll also evaluate most popular caching

solutions, to guide readers in choosing the right tool for

their needs.

II. DESIGN STRATEGY TO EFFECTIVELY USE

DISTRIBUTED CACHING

Identify Caching Candidates: Designing an effective

caching strategy begins with identifying suitable data for

caching. Not all data is ideal; the focus should be on

frequently accessed, read-heavy datasets with relatively

low volatility, such as product catalogs, user profiles, and

session data. To further optimize retrieval, consider

precomputing and storing aggregated data rather than raw

datasets. For instance, instead of caching every transaction

record, precompute and store aggregate statistics like total

daily sales or active user counts per region. This approach

minimizes computational overhead during real-time

queries, improves data access speeds, and provides

consistent, summarized insights for frequently requested

data. By strategically identifying and preparing caching

candidates, systems can achieve higher efficiency and

better source utilization.

Define Cache Policies: Designing effective cache policies

is critical for maintaining performance and cost efficiency

in distributed systems. Eviction policies such as Least

Recently Used (LRU) or Time-To-Live (TTL) play a

central role in managing memory by ensuring that stale or

irrelevant data is systematically removed. Without these

strategies, caches can become overloaded, leading to

excessive memory consumption and increased compute

Vigneshwaran Manivelmurugan
Senior Lead Software Engineer

Capital One
Richmond, Virginia, USA

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

IJERTV14IS010006

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :
http://www.ijert.org

Vol. 14 Issue 01, January-2025

www.ijert.org
www.ijert.org

costs, as well as degraded performance due to slower

retrieval speeds. This often necessitates costly full

memory clean-ups or scaling operations. When crafting a

caching strategy, factors like data access patterns,

expected volatility, and memory constraints should guide

the choice of eviction policies. TTL policies help to

balance freshness and resource efficiency by automatically

expiring data after a set period, while LRU ensures that

infrequently accessed items are prioritized for removal.

The absence of a well-defined policy can result in stale

data inconsistencies that compromise application behavior

and user experience. An intelligently designed caching

strategy optimizes resource utilization, keeps costs under

control, and ensures high performance by maintaining a

clean and relevant cache.

Use Partitioning: Designing an effective partitioning

strategy is essential for distributed caching to enhance

scalability and reliability. Consistent hashing is a widely

used method that distributes keys evenly across available

cache nodes, ensuring minimal disruption when nodes are

added or removed which is common in cloud

environments. This approach reduces the likelihood of

hotspots and maintains a balanced workload. In contrast,

range-based partitioning assigns keys to predefined ranges

on specific nodes, making it suitable for ordered datasets

but prone to hotspots if access patterns are uneven.

Modulo-based partitioning uses a modulus operation to

determine node allocation, offering simplicity but causing

significant rebalancing when nodes change. Dynamic

partitioning, which relies on real-time load-balancing

algorithms, is ideal for highly variable workloads but

comes with added complexity in implementation. When

designing the partitioning strategy, factors such as data

access patterns, scalability needs, and fault tolerance

requirements must be carefully evaluated to choose the

most appropriate method for the application’s demands. A

well-architected partitioning strategy ensures optimized

resource utilization, maintains high performance, and

supports seamless scaling.

Ensure Cache Coherency: Designing a cache coherency

strategy requires a clear understanding of the application's

data access patterns and consistency requirements. Cache

invalidation techniques, such as write-through, write-

behind, or explicit invalidation, are essential for

maintaining synchronization between the cache and the

primary data source. In a write-through strategy, updates

are written to both the cache and the database

synchronously, ensuring immediate consistency, which is

ideal for critical systems requiring real-time accuracy.

Write-behind strategies, where updates are batched and

asynchronously written to the database, can improve

performance but introduce temporary inconsistencies that

need careful management to avoid data conflicts. Explicit

invalidation offers precise control, allowing specific data

entries in the cache to be refreshed or removed,

particularly effective for datasets with predictable or low-

frequency changes. When designing these strategies, it is

vital to account for potential issues such as cache

pollution, where stale data occupies valuable memory, and

data staleness, which can lead to incorrect application

behavior. Effective cache coherency strategies not only

enhance system reliability but also optimize resource

usage, ensuring that cached data is accurate, relevant, and

delivered with minimal overhead.

Monitor and Optimize: Continuously monitor cache

performance metrics like hit ratio and latency to identify

and resolve inefficiencies. A well-designed monitoring

strategy starts by defining the key performance indicators

(KPIs) for your cache, such as cache hit ratio, latency,

memory usage, and node availability. These metrics

provide insight into how effectively the cache is reducing

backend load and improving application responsiveness.

To design an effective optimization strategy, identify

patterns in cache misses and evaluate whether the data

being cached aligns with access patterns. Optimization

should be an iterative and ongoing process, leveraging

both real-time analytics and historical trends to refine the

caching strategy continually.

Leverage Cache Hierarchies: When designing a caching

strategy, it is crucial to recognize that distributed caching

does not necessarily replace local (in-process) caches.

Instead, the two can complement each other to provide

faster access to frequently used data. Local caches operate

within the application’s process space, offering the lowest

latency by eliminating the need for network calls. They are

ideal for storing small, frequently accessed datasets

specific to the application’s immediate context, such as

user session data or configuration settings. Distributed

caches, on the other hand, provide a shared, scalable

solution for larger datasets that need to be accessed by

multiple services or instances. By combining these

hierarchies, local caches handle immediate, high-speed

retrievals, while distributed caches ensure broader

availability and scalability across the system. This layered

approach minimizes latency, optimizes resource

utilization, and balances the workload effectively,

ensuring a robust and efficient caching architecture.

III. DEFINE KEY AND PAYLOAD STRUCTURE

Choosing an appropriate key design is critical in

distributed caching to avoid issues like hotspots and hash

collisions, which can degrade performance and system

reliability. A poorly designed key can result in uneven

data distribution across nodes, leading to overloading

some nodes while others remain underutilized. To design

effective keys, ensure they are unique, evenly distributed,

and derived from predictable attributes of the data, such as

user IDs, session identifiers, or composite keys

incorporating timestamps or categories. Incorporating

consistent hashing ensures that keys are mapped

effectively to minimize rebalancing when nodes are added

or removed.

Payload size also plays a significant role in caching

performance. Large payloads can increase memory usage

and network latency, reducing overall cache efficiency. To

optimize payload size, employ data serialization

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS010006
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 01, January-2025

www.ijert.org
www.ijert.org

techniques like JSON, Protocol Buffers, or MessagePack,

selecting a format based on the trade-off between human

readability and compactness. Protocol Buffers and

MessagePack, for instance, provide compact and efficient

serialization, making them ideal for scenarios where

minimal memory and bandwidth usage are essential. By

designing lightweight payloads and efficient keys, caching

strategies can achieve optimal performance and resource

utilization.

Fig.1. High level design

IV. CHOOSE THE RIGHT CACHE

When selecting a caching solution, the choice between

Redis, Memcached, and AWS ElastiCache depends on

specific workload characteristics such as read-to-write

ratio, data complexity, and scalability requirements.

Redis: Redis is a versatile, high-performance in-memory

data store that supports advanced data structures like

strings, hashes, lists, and sets. It offers persistence options,

enabling durability across system restarts, and supports

clustering for high availability and horizontal scaling.

Redis’s features make it an excellent choice for

applications requiring complex operations, pub/sub

messaging, or atomic transactions. Its ability to handle a

wide range of use cases, such as session storage, real-time

analytics, and leaderboards, makes it a robust option for

modern applications.

Memcached: Memcached is a lightweight, high-speed

caching solution designed for simple key-value storage. It

is particularly well-suited for scenarios where simplicity

and speed are paramount, such as API response caching or

web page fragments. While Memcached excels in

lightweight use cases, it lacks the advanced data structures

and persistence features offered by Redis, making it less

suitable for applications with complex requirements.

AWS ElastiCache: AWS ElastiCache offers a fully

managed caching solution that supports both Redis and

Memcached. It integrates seamlessly with AWS

ecosystems, providing automated scaling, patching, and

monitoring capabilities. ElastiCache is ideal for

applications running on AWS, as it eliminates operational

overhead and allows developers to focus on application

logic. Its support for cluster mode enables high availability

and horizontal scaling, making it a versatile choice for

both simple and complex workloads.

When to Choose What: Redis is best suited for

applications requiring advanced data structures,

persistence, or high availability through clustering. Its rich

feature set makes it an ideal choice for use cases like real-

time analytics, pub/sub systems, and session management.

Memcached is the preferred option for lightweight,

straightforward caching needs where simplicity and speed

are critical. For organizations leveraging AWS,

ElastiCache provides the flexibility to choose between

Redis and Memcached while benefiting from AWS’s fully

managed infrastructure. By aligning the choice of caching

solution with workload requirements and operational

constraints, developers can optimize performance and

scalability effectively.

V. PERFORMANCE COMPARISON

Distributed caching offers substantial performance

improvements compared to traditional databases,

particularly in scenarios with high read/write workloads.

Databases, while reliable for long-term storage and data

integrity, inherently face higher latencies due to disk I/O

and the network overhead involved in handling queries.

These latencies can increase significantly under heavy

workloads. In contrast, distributed caching leverages in-

memory storage, drastically reducing data retrieval times

and improving system responsiveness.

In our test, solutions like Redis have achieved data

retrieval latencies as low as sub-millisecond levels,

whereas database queries may take several milliseconds or

more, depending on the query complexity and system

load. Distributed caches also excel in throughput, often

handling over 100,000 requests per second, far surpassing

the capabilities of many databases.

The cost dynamics further illustrate their complementary

nature. While distributed caches reduce the load on

databases by offloading frequent reads, their reliance on

memory, which is more expensive than disk-based storage,

necessitates efficient cache management. Caches should

primarily handle high-demand data, while databases retain

responsibility for durable and comprehensive data storage.

Metrics such as cache hit ratio, latency, and throughput

provide concrete comparisons. A high cache hit ratio

(>90%) indicates that most data requests are fulfilled

directly from the cache, significantly reducing database

stress. Visual analyses reinforce latency, throughput and

cost.

Fig.2. Latency Comparison (Figure shows response times

of caches against traditional databases)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV14IS010006

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 01, January-2025

www.ijert.org
www.ijert.org

Fig.3. Throughput Comparison (Figure demonstrates the

caches capable of serving sustaining concurrent requests)

Fig.4. Cost Comparison (Figure demonstrates costs for

caches versus compute and storage costs for databases)

VI. CONCLUSION

Distributed caching is a vital component for creating

scalable and responsive applications in cloud and

microservice environments. By integrating caching

solutions into system design, architects can effectively

enhance performance and meet low-latency requirements.

Solutions like Redis, suitable for complex operations, and

Memcached, optimized for lightweight needs, enable

developers to tailor strategies for specific workloads.

Distributed caches reduce database dependency by

handling high-frequency queries in-memory, ensuring

faster response times without compromising resiliency or

cost-efficiency. At the same time, databases offer durable

storage for data integrity and recovery. This synergy

enables recovery and rebuilding of caches during failures,

further enhancing system reliability.

By balancing cost and performance, caching strategies

prioritize efficient memory utilization while maintaining

durability. This thoughtful integration of caching and

database systems empowers architects to design high-

performance systems that cater to the complex demands of

modern applications, ensuring both responsiveness and

resilience.

REFERENCES

[1] Redis Documentation: Official Redis documentation covering features

like advanced data structures, persistence, and clustering

https://redis.io/documentation

[2] Memcached Documentation: Comprehensive guide to Memcached's

architecture and use cases for lightweight key-value storage.

https://memcached.org/.

[3] AWS ElastiCache Documentation: Insights into AWS’s managed

caching service with support for Redis and Memcached.

http://aws.amazon.com/elasticache/

[4] Google Protocol Buffers Documentation: Official Protocol Buffers

documentation, useful for efficient data serialization.

https://protobuf.dev/

[5] MessagePack Documentation: Information on MessagePack, a

compact and efficient data serialization format. https://msgpack.org/.

[6] Designing Data-Intensive Applications by Martin Kleppmann:

Reference for distributed system design principles and best practices,

including caching strategies.
https://martin.kleppmann.com/2017/03/27/designing-data-intensive-

applications.html

[7] Exploring Fine-Grained In-Memory Database Performance for
Modern CPUs," in IEEE Transactions on Parallel and Distributed

Systems, vol. 34, no. 6, pp. 1757-1772, June 2023, doi:

10.1109/TPDS.2023.3262782.
[8] Performance Evaluation for Distributed Systems

https://www.geeksforgeeks.org/performance-evaluation-for-

distributed-systems/
[9] High Performance Application With Distributed Caching.

https://info.couchbase.com/rs/302-GJY-

034/images/High_Performance_With_Distributed_Caching_Couchbas
e.pdf

AUTHOR PROFILE

Vigneshwaran Manivelmurugan

I am a technology leader with over 15 years of experience

in cloud-native architecture, distributed systems, and

machine learning engineering. I specialize in delivering

mission-critical solutions, building scalable and secure

applications, optimizing data pipelines, and modernizing

complex platforms. My work has earned recognition,

including awards for data engineering excellence and

opportunities to judge prestigious industry awards. I am

passionate about using technology to create seamless

customer experiences and deliver meaningful business

value.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 14 Issue 01, January-2025

IJERTV14IS010006

https://msgpack.org/
www.ijert.org
www.ijert.org

