
Detection and Prevention of Intrusions in

Multi-tier Web Application using Static and

Dynamic Algorithm

Vaibhavi Kamble.1, Ritupanna Hazra2 , Rupali Gajbhiv3 , Prof . Nilesh Thorat4

1Dept. of Information Technology, BSIOTR, Pune, India
2 Dept. of Information Technology, BSIOTR, Pune, India
3 Dept. of Information Technology, BSIOTR, Pune, India

4 Assistant Professor, Dept. of Information Technology, BSIOTR, Pune, India

 Abstract - In today’s world there is enormous use of Internet

services and applications. It has become an inextricable part of our

lives and makes communication and management of personal

information possible irrespective of time and place. To make the

increase of applications and data complexity manageable web

servers have moved to a multi-tiered design where the web server

runs the application front-end and data is outsourced to database.

There is a growing need to protect personal data hence Intrusion

Detection System is required. This paper proposes an Intrusion

Detection & Prevention System that models the network behavior of

user session across both the front-end (web server) and the back-end

(database). Efforts are made to attack both web servers as well as

database individually. Scrutinizing both database and its preceding

web request we are able to detect attacks that independent IDS

would not be able to identify. For static websites, a well-correlated

model is build for effectively detecting different types of attacks. This

will be true for dynamic requests as well where both retrieval of

information and updates to the back-end database occur using the

web-server front-end. This paper focuses on session hijacking attack,

brute force attack, MongoDB injection attack MongoDB Null Byte

injection attack, cross scripting attack.

General Terms - Session hijacking attack, Brute force attack,

MongoDB-injection attack, Cross scripting attack.

Keywords - Intrusion Detection System, Intrusion Prevention

System, Pattern Mapping, Virtualization.

1. INTRODUCTION

 Now a day’s web services and applications have increased in

terms of quantity, popularity and complexity, because of the

rapid rise in information technology era. Most of the daily tasks

such as social networking, travelling, banking and online

shopping are all done by using the web. So it resides at the core

of almost all advanced technologies that make human life

simplified. The number of Social networking and e-commerce

sites and other web portals are increasing day by day which in

turn increase the frequency of cyber-attacks along with the

growth of web services and web applications. Efforts are made

by these web attacks to access secure data with an endeavor of

interception of unauthorized data over an information

technology infrastructure. Such web attacks popular nowadays

include Injection attack, Denial-of-Service attacks, Session

Hijacking attack and many more.

Intrusion detection System (IDS) is generally used to protect

web applications. This system detects known attacks by

matching misused traffic patterns or signatures. A class of IDS

based on machine knowledge can be used to detect unknown

attacks by finding abnormal network traffic that vary from

normal behavior, before found during the IDS training phase.

The web IDS and the database IDS can find abnormal network

traffic sent to either of them. But these IDS cannot determine

attacks where in normal traffic is used to attack the database

and the web server For example, when an intruder enters into a

web server as a normal user but by using web server weakness

issues privileged data base queries from the web server to attack

database server. In order to detect these types of attacks an

association between web server request and data base queries

needed. For that intrusion detection system is implemented both

at the web server and the database server.

A Container is generated by using virtualization technique

referred it as a lightweight process. It looks like a disposable

server for client sessions. It is possible to create thousands of

containers on a single web server, and these virtualized

containers can be removed, deleted or quickly reassigned to

serve new sessions. A single method with passion develops new

containers and recycles used ones. It means a single physical

server can run constantly and serve all web requests. Looking

from a logical viewpoint each session has dedicated web servers

and isolated from other sessions which allows finding out

suspect behavior by both session and user. If it detects abnormal

behavior in a session, then all traffic within this session is

treated as polluted traffic.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030601

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

520

AppSecure represents the deployment of intrusion detection

system (IDS) for both ends; in which front end is web server

and back end is database server. This simply represents a virtual

containers web server architecture where multiple containers are

created for each user session using lightweight process. This

containers based and session separated architecture enhances

security performances as well as provides the isolated

information flows that are separated in each container session.

This allows finding out the mapping between web server

request and database queries. In multi-tier web architecture

client sends HTTP request to the web server and then web

server issues queries related to the client request to the data base

server to retrieve or update data depending on the HTTP

request.

AppSecure models such mapping relationships from all the

legitimate users so as to detect web attacks. With this virtual

container based approach it is possible to build a pattern

mapping between web request and database queries.Fig.1depicts

the virtual container architecture, which created containers both

at front end and back end. In which client gives web request as

Rq and has associated database query DQ. Web server receives

response from database as DR then web server sends response

to client as Rs. This whole transaction is isolated in one session

it called as a container and it is denoted by VE in Fig. 1.

Fig: Normality Model

2. LITERATURE REVIEW

 Web applications are become more vulnerable today,
so there is need to find out new way to secure them. According
to OWASP (Open Web Application Security Project) attacks
like MongoDB Injection, Cross Site Scripting (XSS) are more
dangerous to web applications. This OWASP present top ten list
of web applications vulnerabilities, in this attack MongoDB
Injection, and Cross Site Scripting attacks are included.

Before this more work done on the security of the web
applications. Based on the web application architecture
Intrusion Detection Systems (IDS) for web server and database
server is used. But these IDS have two types according to its
work nature. First one is anomaly detection detects the unknown
attacks by identifying abnormal behavior. Second one is the
misuse detection detects the only known attacks by matching
the signatures of the attack.

Rule Based Systems proposed a new open source intrusion
detection systems based on the misuse detection type. Here
manually have to characterize the attack for that there is need
to study and analyze the attack. After analyzing this signatures
used to detect the attacks by matching the signature with the
data collected from real traffic. Main disadvantage of this
system is rules are generated manually, therefore traffic not
included in rule is considered as a abnormal.

Attack detection method is on the basis of malicious score and

reported anomalous queries, this method called as detection

method.

This approach based on the stateful analysis of multiple event

streams. So here intrusion is defined as the sequence of

malicious actions that convey system from normal state to

compromised state through a number of in-between states.

State transition analysis build signatures of attacks by

analyzing sequence of actions performed by an attacker to

attack the system. And easily find out attacks using this

system.

In this approach first detailed characterization of web
application is done by defining web application internal state
as information that survives single client server session or
here simply minimum state information is passed as a cookie
to a browser. This approach model out attack state for that it
requires state information in which that attacks is generally
executed. Working of this system takes place in two modes
fist is training and second detection. At the time of training
mode attack signatures are generated and in detection mode
this signatures are used to detect attacks.

The easiest and the most effective client- side solution to the
XSS attack for user is to disable JavaScript in their browsers.
Unfortunately, this solution is often not feasible because a
large number of web sites use JavaScript for navigation and
improved presentation of information. Noxes, a tool is a
client-side web -proxy that relays all web traffic and serves as
an application-level firewall. The approach works without
attack-specific signature. Noxes works as a personal firewall
which allows or blocks connections to websites based on filter
rules. Filter rules are mainly the white list and blacklist of
URLs specified by the user. Whenever a browser sends a
HTTP request to an unknown website not listed in filter rules
Noxes instantly shows a connection alert to client who can
then decide to allow or reject the connection and it remembers
the client's exploit for future use. Noxes requires user
configuration and user communication when a doubtful event
occurs which turns as a disadvantage of this tool.

Another client-side approach is present in , which aims to
recognize information outflow using tainting of input in the
browser. All client side solutions contribute one weakness, the
requirement to install updates or additional components on
each user’s workstation. While this might be a sensible
prerequisite for skilled, security-aware computer users, it is
supposed as an obstruction or is not even considered by the
enormous bulk of users. Thus, the level of protection such a
system can offer is severely limited in practice.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030601

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

521

Server side solution makes helpful contribution in the field as
XSS-Guard transforms the server programs such that they
produce a shadow page for real response page. The key idea in
the approach is to learn the purpose of the web application
while creating the HTTP response page. This is done through
shadow pages, which are generated every time a HTTP
response page is generated. This pages are similar to the real
HTTP response returned by the web application with mainly
one important difference only retain the script that were
intended by the web application to be included, and do not
contain any injected scripts. Given the real and shadow pages,
one can match up to the script content present in the real page
with web application intended content, present in the shadow
page. Any difference detected here indicates a variation from
the web application's intentions and therefore signals an attack.

A Multi-agent system has been explored for the automated
scanning of websites to detect the presence of XSS
vulnerabilities usable by a stored XSS attack. It works by
finding the input points of the application disposed of being
vulnerable to a stored XSS attack then injecting selected attack
vectors at the previously detected points. Finally it checks the
web application for the injected scripts in order to confirm the
accomplishment of the attack. It is not able to run-time
detection and prevention of attack; also it can be used for attack
detection only, with no method for prevention .Other Server
Side solution also has some E-guard algorithm approach, there
is no system to handle scripts which are stored in Grey list,
hence these are left for future analysis. So this algorithm does
not give a reasonable or can say total prevention from XSS
attack. This is a passive method which does not provide
dynamic detection and prevention of XSS attack. Also these
solution do not provide a correct framework, some of them have
partial implementation.

3. APPSECURE MODEL

AppSecure builds the normality model to detect various attacks
like Injection, Session Hijacking. To build the model it uses
different pattern mapping techniques such as Deterministic
Mapping (DM), Empty Query Set (EQS), No Matched Request
(NMR) and Non Deterministic Mapping (NDM).We define
following symbols for developing the mapping structure:

ri : request for any session ‘i’.

Qi : query set for session ‘i’.

ф : empty set.

QT : query for all sessions.

Table 1. AppSecure Pattern Mapping Techniques.

Sr.No Pattern Name Description

1 Deterministic ri → Qi

2 Empty Query Set ri → ф

3 No Matched Request ф → Qi

4 Non Deterministic ri→ QT

Pattern mapping is the assignment of a label to a given input
value. As illustrated in the Fig.1 the entire request from
clients to the data base server are separated by sessions. Each
session is assigned with a unique session ID. AppSecure
normalizes the variables values in both HTTP request and DB
queries and substitutes actual values of the variables with
symbolic values. As a result session i will have set of request
ri and set of queries Qi. If N are the total number of session,
We have total web request REQ and queries across all
sessions. In DM Web request ri appears in all traffic with the
queries set Qi. The mapping patterns is then ri → Qi .For any
session in the testing phase with request ri, the absence of a
query set Qi matching the request indicates a possible
intrusion. On the other hand, if Qi is present in session traffic
without the ri, then this refers to as an intrusion. In special
case, the query set may be the empty set, thus forms EQS
pattern mapping technique. It means that the web request
neither causes nor generates any database queries. For
example, when a web request foe retrieving an image GIF file
from the same web server is made , a mapping relationship
does not exist because only the web request are observed.
This type of mapping is represented as: ri → ф. During the
testing phase, we keep these web requests together in the set
EQS.

In some case, the web server may periodically submit queries
to the database server in order to conduct some scheduled
tasks, such as backup. This does not require any web request
we call it as NMR and is similar to the reverse case of the
empty Query set mapping pattern. These queries cannot match
with any web request, and keep these unmatched queries in a
set NMR. It is denoted like this ф → Qi. During the testing
phase, any query within set NMR is considered legitimate.
The size of NMR depends on web server logic, but it is
typically small. In NDM based on input parameters or the
status of the web page at the time of the web request the same
web request may result in different query sets. In fact, these
query sets do not appear randomly, and there exists a pool of
query sets. There exists a pool of query sets, so every time the
same type of web request arrives, it matches up one of the
query sets in the pool. The mapping pattern is denoted as ri →
QT Therefore, it is difficult to identify traffic that matches this
pattern.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030601

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

522

AppSecure is employed with four different types of pattern
mapping techniques. These techniques are shown in Fig.2
systematically. As shown in Fig.2 when web request rm comes
at the web server logic(WSL) then according request it belongs
to any one of the pattern mapping technique(PMT) as
deterministic mapping(DM), non-deterministic
mapping(NDM), But some web request are not having
associated data base queries then it is included in empty query
set(EQS). Sometimes web server have to do some special task
like a backup or Corn jobs at that time there is no need of web
request. So we include this type of queries of SQL Query Set
(SQS) in No matched request (NMR) mapping pattern.

Fig.2 AppSecure Pattern Mapping Architecture

4. APPSECURE METHODOLOGY

In AppSecure containers are created for each user session
widely using virtualization technique. This strategy focuses on
the detecting following attacks in multi-tier web applications by
using a pattern mapping architecture.

4.1 Hijack Future Session Attack

This category of attacks mostly occurs at the web server side.
In this type of attack an attacker takes over the whole web
server and therefore hijacks all resulting sessions and release
attack. In this attack attacker hijack all unauthorized user
sessions and send spoofed replies, drop user requests and
eavesdrop. A session hijacking attack can also be called as
Spoofing or man-in the-middle attack, an Exfiltration Attack,
Denial-of Service or Packet Drop or Reply attack. AppGuard
easily detect this attack also by using mapping model.

4.2 Brute Force Attack

A password attack that does not attempt to decrypt any

information, but continue to try different combinations for

passwords. For example, a brute-force attack may have a

dictionary of all words or a listing of commonly used

passwords. A brute force attack tries all words it has to gain

access to the account . Another type of brute-force attack is a

program that runs through all letters or letters and numbers

until it gets a correct match. Eventually a brute-force attack

may be able to gain access to an account however, these

attacks can take several hours, days or even months to run.

The time taken to complete these attacks is dependent on how

complicated the password is and how well the attacker knows

the target.

 To help prevent brute-force attacks many systems will only

allow a user to make a mistake in entering their username or

password three or four times. If the user exceeds the limited

number of attempts provided, the system will either lock

them out of the system or prevent any future attempts for a set

amount of time

Fig 3.: Brute Force Attack

4.3 MongoDB Injection Attack

Its a common misconception that as MongoDB does not use

SQL it is not vulnerable to SQL injection attacks. Objects

are used in PHP rather than SQL to pass queries to the

MongoDB server; for example the following script selects

an item form MongoDB where the username equals 'bob'

and the password equals 'password'.In a normal injection

attack we can replace either of the two input parameters

with a string such that the query always returns true. That

wont work with MongoDB; however if we can pass in an

object to the PHP MongoDB driver we could alter the query

in a similar fashion. PHP provides a way to pass objects as

GET or POST parameters.

4.4 MongoDB Null Byte Injection Attack

Cross Site Scripting is up till now another type of attack on

the web applications. In this type of attack malicious data is

injected into a database so as to achieve unauthorized access

to connection of an authorized user.

4.5 Cross Site Scripting (XSS) Attack
Cross Site Scripting is up till now another type of attack on
the web applications. In this malicious data is injected into a
database so as to achieve unauthorized access to connection
of an authorized user.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030601

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

523

Fig.3 AppGuard attack flow architecture.

Websites normally utilize scripts written in JavaScript coupled
with HTML, which runs on a client side depiction application
for faultless user experience. Attackers make use of the fact that
there is a true relationship between a web server and a browser.
Such attacks can take place when data sent to the server are
located on the web site without being well analyzed for realistic
security threats. If the data input in a form is a malicious script,
it will be run by the browser. In the simplest case, a user will be
shown pop-up window with its session ID entirely recognizing
it.

Cross site scripting (XSS) is a usual attack method where in the
attackers injects malicious client scripts via valid user inputs. In

AppGuard, the entire user input values are normalized so as to
construct a mapping model based on the structures of HTTP
request and DB queries. Once the nasty user inputs are
normalized, AppGuard cannot detect attacks hidden in the
values. So in order to detect XSS attacks a pattern mapping step

wise algorithm is offered in this paper. Also to detect Injection
and Session Hijacking, attack pattern mapping algorithm is
presented here.

 5. APPGUARD ALGORITHMIC
STRATEGY

AppGuard protect web application from attacks like Injection,
Session Hijacking and XSS. So it provides various algorithms
for that, XSS attack algorithm used for XSS attack detection
and prevention. Algorithm uses attack vector, once attack is

detected it is removed from the input value. For detection of
Injection and Session Hijacking attack pattern mapping
algorithm is used. To map the pattern we require session ID for
web request and associated database query, for collection of this

session ID Session Handling algorithm is used. Once the
session ID is collected it is used for mapping, for that it uses
four different pattern mapping techniques.Intrusion detection
algorithm is used for detection of these attacks.

Algorithm 1. Static Model Building Algorithm

Require: Training Data set, Threshold t Ensure: The

Mapping Model for static website

1: for each session separated traffic Ti do

2: Get different HTTP requests r and DB queries q in this

session

3: for each different r do

4: if r is a request to static file then

5: Add r into set EQS

6: else

7: if r is not in set REQ then

8: Add r into REQ

9: Append session ID i to the set ARr with r as the

key

10: for each different q do

11: if q is not in set SQL then

12: Add q into SQL

13: Append session ID i to the set AQq with q as the key

14: for each distinct HTTP request r in REQ do

LE ET AL.: DOUBLEGUARD: DETECTING INTRUSIONS

IN MULTITIER WEB APPLICATIONS 519

15: for each distinct DB query q in SQL do

16: Compare the set ARr with the set AQq

17: if ARr ¼ AQq and CardinalityðARrÞ > t then

18: Found a Deterministic mapping from r to q

19: Add q into mapping model set MSr of r

20: Mark q in set SQL

21: else

22: Need more training sessions

23: return False

24: for each DB query q in SQL do

25: if q is not marked then

26: Add q into set NMR
27: for each HTTP request r in REQ do

28: if r has no deterministic mapping model then

29: Add r into set EQS
30: return True

Detection for Dynamic Websites

Once we build the separate single operation models, they can

be used to detect abnormal sessions. In the testing phase,

traffic captured in each session is compared with the model.

We also iterate each distinct web request in the session. For

each request, we determine all of the operation models that

this request belongs to, since one request may now appear in

several models. We then take the entire corresponding query

sets in these models to form the set CQS. For the testing

session i, the set of DB queries Qi should be a subset of the

CQS. Otherwise, we would find some unmatched queries. For

the web requests in Ri, each should either match at least one

request in the operation model or be in the set EQS. If any

unmatched web request remains, this indicates that the session

has violated the mapping model.For example, consider the

model of two single opera-tions such as Reading an article and

Writing an Article. The mapping models are READ ! RQ and

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030601

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

524

WRITE ! WQ, and we use them to test a given session i. For all

the requests in the session, we then find that each of them either

belongs to request set READ or

WRITE. (You can ignore set EQS here.) This means that there

are only two basic operations in the session, though they may

appear as any of their permutations. Therefore, the query set Qi

should be a subset of RQ [WQ, which is CQS. Otherwise,

queries exist in this session that do not belong to either of the

operations, which is inconsistent with the web requests and

indicates a possible intrusion. Similarly, if there are web

requests in the session that belong to none of the operation

models, then it either means that our models haven’t covered

this type of operation or that this is an abnormal web request.

According to our algorithm, we will identify such sessions as

suspicious so that we may have false positives in our detections.

AppGuard can be applied on web application created by us, it
able to detect attacks like session hijacking attack, brute force
attack, MongoDB-injection attack and Cross Site Scripting
(XSS). AppGuard also able to prevent some attack like Session
Hijacking, Cross Site Scripting (XSS).

6. CONCLUSION
The proposed AppGuard as an intrusion detection system
detects typical web attacks like MongoDB Injection, Session
Hijacking, MongoDB Null Byte injection, Brute force and XSS
(Cross site scripting attack) that occur in a multi-tier web
application. AppGuard uses pattern mapping algorithm for
detection purpose. This gives a mechanism to secure web
application from XSS by using a framework based on attack
vector and pattern matching approach.

The power of the proposed framework is that it can be applied
on any existing web application without source code
modification. The proposed AppGuard framework best at
enhance and strengthen the multi-tier web application security.

7. REFERENCES
[1] Meixing Le, Angelos Stavrou, Brent Byoung Hoon Kang ,

“Double Guard : Detecting Intrusion in Multitier Web

Applications”, IEEE Transactions on dependable and secure

computing volume 9, no 4, July/August 2012.

[2] M. Jons, B Engelmann, and J. Posegga, “XSSDS : Server-side

Detection of Cross-site Scripting Attacks”,Computer Security

Applications Conference,2008 ACSAC 2008, Annual IEEE,pp

335-344,2008.

[3] A. Klein “Dom based cross site scripting or XSS of the third

kind”, Web Application Security Consortium, Articles, Vol. 4,

2005

[4] Anely. “Advanced injection in server applications”, Technical

report, Next Generation Security Software, Ltd,2002

[5] E. Kirda, C. Kruegel,G Vigna, and N. Jovanovic “Noxes : A

Client side solution for Mitigating Cross-Site Scripting

Attacks”, Dijon France SAC' ACM 06 April 2006.

[6] A. K. Ganame, J. Bidou, F. Spies, “A Global Security

Architecture for intrusion on Computer Networks”,

Montbeliard Volume 27, March 2008

[7] G.W. Dunlap, S. T. King, S. Cinar, M Basrai, “Enabling

intrusion analysis through virtual-machine logging and reply”,

Boston, MA, USA, December2002

[8] http:// www.san.org/top-cyber-security-risk/

[9] A. Stock, J. Williams, and D. Wichers, OWASP TOP 10,

OWASP Foundation 2013.

[10] Chiristoper Kruegel, G. Vigna, William Robertson, “A

mutimode- approach to the detection of web-based attacks”,

Computer Networks 48 ELSEVIER pp.717-738.2005.

[11] P.Vogt,F Nentwich, N Jovanovic,C Kruegel,E. Kirda and

G vigna. “Cross site scripting prevention with dynamic data

taining and static analysis”, 14th Annual network and

Distributed System Security Symposium (ndss),2007.

[12] E.Gal an A.Alcaide A. Orfila, J blasco, “A multi-agent scanner

to detect stored XSS vulnerabilities”, IEEE International

Conference on Internet Technology and Secure Transactions

(ICITST)JUNE 2010

[13] M.James Stephen P.V.G.D. Prasad Reddy, ch Demudu

Naidu, “Prevention of cross site Scripting with E-

guard Algorithm”, International Journal of Computer

Application Volume22- No5 May2011.

[14] Y. Huang, A. Stavrou, A. K. Ghosh, and S.J ajodia. “Efficiently

tracking application interactions using lightweight

virtualization”. In Proceedings of the 1st ACM workshop on

Virtual machine security, 2008

[15] Y. Hu and B. Panda. “A data mining approach for database

intrusion detection”. In H. Haddad, A. Omicini, R. L.

Wainwright, and L. M. Liebrock, editors, SAC. ACM, 2004.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030601

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

525

