
Developing a Robust Framework for Test

Automation

Vaishnavi S Kulkarni
Post graduate Student

The National Institute of Engineering,

Mysore India

Asha N
Associate Professor

The National Institute of Engineering,

Mysore India

Abstract- Manual software testing is used for verification of

most software projects. However manual testing suffers from

many setbacks. To improve software testing, it is important to

automate the testing process. Only record and playback does

not provide robustness, portability and script stability. We

developed a new framework with an emphasis on modularity

for test automation. This would help speed up creation of

automation scripts and enable easy maintenance of scripts.

Keywords: Testing, Automation, Framework

I.INTRODUCTION

The software development lifecycle consists of many

phases like Requirement gathering, Design,

Implementation or coding, Testing, Deployment and

Maintenance.

Ideally the allocation of time and efforts has to be

equivalent or almost equivalent in all these phases. But

most companies tend to ignore the testing phase leading to

poor quality of software which leads to customer

dissatisfaction and even at times recalling the software.

Verification and Validation are very important and a

dedicated team needs to be deployed for the same. As the

oft repeated definition goes “Verification tells are we

building the product right whereas Validation tells are we

building the right product. In this regard keeping in mind

the needs of the stakeholders testing assumes an important

position in reliable software development.

The increased complexity of systems as well as short

product release schedules makes the task of testing

difficult. One of the prime problems is that testing typically

comes late in the project release cycle, and normal testing

is performed manually. When bugs are detected, the cost of

rework and additional regression testing is costly and

further impacts the product release. Nowadays the

increased complexity of software-intensive systems means

that there are a potentially indefinite number of

combinations of inputs and events that result in distinct

system outputs, and many of these combinations are often

not covered by manual testing. Thus, Automation Testing

is gaining importance in the present times.

II.LITERATURE SURVEY

It must also be noted that manual testing suffers from

various disadvantages like manual testing is slow and

costly. It takes a long time to complete tests.

Also, Manual tests don’t scale well. As the complexity of

the software increases, the complexity of the testing

problem grows exponentially. Manual testing is not

consistent. Variations in how the tests are performed are

inevitable, for various reasons. There is also lack of

training. The staff should be well-trained in the different

phases of software testing like Test design, Test execution,

and Test result evaluation Testing is difficult to manage.

[1]

Test automation is more difficult to execute than plan if a

high percentage of tests are to be automated it may be

required to invest a lot of effort and costs, and it might take

a long time to get there. This gets even worse when there

are changes to the system under test force the team to

revisit and revise part or all of automation. The testing

team can end up spending more time on automation than

on testing, and as a result may produce fewer test cases,

thus negating a prime potential benefit of automation.[2]

 Systematically and yet efficiently testing healthcare

software systems is very difficult due to the following

reasons: 1) Healthcare software systems are integrated, as

they are aimed at supporting the integration of a wide

variety of healthcare workflows Healthcare software

systems often embed a large volume of special domain

knowledge which is related to both healthcare financial and

clinical workflows. The healthcare software industry,

particularly for healthcare information management, is not

highly profitable, as healthcare IT expenditures are a very

small percentage (2%) of overall healthcare expenditures.

[3]

III.EXISTING SYSTEM

However it must be clarified here that only record and

playback cannot be considered as reliable automation

testing. ; Automated testing automates not only test case

execution, but also test case generation and result

verification. A fully automated testing system is able to test

software without any user intervention. This cannot be

achieved without building a robust test automation

framework.[4]

The four main capabilities of reliable automation

frameworks are:

•Testers should be able to visualize each step of the

workflow and edit test cases intuitively.

• Frameworks must have capability to integrate with

spreadsheets and provide powerful calculation features.

• The framework must automatically generate reports of the

test run and show the results in an easy-to-read format. The

reports should provide specifics about where application

failures occurred and what test data was used.

• A key factor to consider while designing a Test

Automation Framework is to identify if it is to be tightly

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS060677

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 06, June-2015

650

Component
Library

Module
level

procedures

Unit Tests for
Components

Module
level

Library

integrated or loosely coupled with the system-under-test

(SUT). [5]

With this in mind we have designed a robust framework for

test automation.

III.PROPOSED SYSTEM

System Design consists of identifying the responsibilities

of various participating entities and the algorithms used for

generating the key identifiers.

Development of a RobustFramework for Automation

Here the development of a robust framework for

development of completely automated test cases, with

reporting module having strong underlying script library is

presented.

Defining a robust folder structure

It is important to recognize the SUT requirement and

define a non-changing, access friendly folder structure

which efficiently stores framework components of all

levels encompassing

• Components

• Modules

• Basic Script scripts

• Logging

• Modal dialog recognition and handling

• Test script maintenance

Hence we decided on a folder structure that would

comprise of a parent folder consisting of various subfolders

including but not limited to:

• Low Level Library consisting of pure scriptsupport and

few custom actions

• Modules Tree consisting of a large number of subfolders

divided on the basis of theirappearance in UI. Each of these

subfolders contains the associated module level file and the

component file and Unit test files (discussed shortly).

• Module level logging logs the message of each action at

the module into a separate file for manual verification of

test results. This makes it easier to drive forward keyword

based test automation in the near future.

• Generic dialog and module dialog handling scripts

Development of the Low level library

 The low level library consists of various

procedures to handle every kind of event involved in the

SUT. For example robust scripts are written in Script for

handling events like mouse clicks, table selection, combo

box selection, tab selection, image comparison, check box

selection and deselection etc. based on the passing of few

basic parameters like component ID and value to be

selected if any.

It must be noted that each of these actions consists of

logging and is parameterized for generality across clients

and applications.

Development of Module level library

 A module consists of all actions required for a

particular subset of related UI and hence functionality of

the given subset in relation to the SUT. The parts of the

module level library are shown in the figure below:

Each subfolder consists of the following:

Component Library

 The recorded components are transformed into

Window and Component nodes which form a hierarchy

that represents the actual structure of the GUI.

Unfortunately, Every time a sequence is recorded, nodes

are generated for components that are not yet represented.

When the sequence is discarded later on, the Components

remain; hence Component nodes have a tendency to

proliferate in all major tools.

For Component nodes the tool based id has an important

function. It is the unique identifier for the Component node

by which events, checks and other nodes that have a target

component refer to it. Such nodes have tool component ID

attribute which is set to the Component’s ID. This level of

indirection is important.

If the GUI of the SUT changes in a way that the tool cannot

adapt to automatically, only the Component nodes for the

unrecognized components need to be updated to reflect the

change and the test will run again. When creating a

Component node, the tool has to assign an ID

automatically. It does its best to create an expressive value

from the information available.

But the same can get repetitive across various tabs,

confusing and even inconsistent as the size of the

component file increases. Hence it is required to have clear,

concise and consistent component IDs across the GUI.

Module level library

A module for each functionality consists of the SUT

consists of the procedures to simulate related actions.

The module thus calls from the low level library required

scriptencompassing parameterized function and is called by

test cases whenever required.

Unit Test for Components

 Unit testing is the basic level of testing. Unit

testing focuses separately on the smaller building blocks of

a program or system. It is the process of executing each

module to confirm that each performs its assigned function.

The advantage of unit testing is that it permits the testing

and debugging of small units, thereby providing a better

Test Scripts

Module Level Libraries

Low

Level

Procedures

and Logging

Script

Support

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS060677

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 06, June-2015

651

way to manage the integration of the units into larger units.

In addition, testing a smaller unit of code makes it

mathematically possible to fully test the code's logic with

fewer tests. Unit testing also facilitates automated testing

because the behavior of smaller units can be captured and

played back with maximized reusability.

Handling Logging

It is very important to have logs of:

• Each script based action at low level

• Each procedure at module level

• Each action at test case level

• Each step at test case level

For the purpose of understanding whether the SUT is

behaving as expected. The log results must be available

outside the tool and also in the runlog. This is achieved by

automating the creation of a file which has all details of the

actions taken by the script and also the UI behavior for the

same. It also details the version information and the step as

well as whether the overall test case has passed or failed.

Handling Modal Dialogs

Various user guidance, error messages, warnings appear in

the normal course of operation to prevent undue actions by

users or to seek user input at various points or to prevent

inappropriate usage of the system.

Test cases are designed to check the contents of these

modal dialogs also. But sometimes they result in

exceptions to the test case in unexpected manners. To

prevent or contain the effect of the modal dialogs that may

pop up in the case of normal or abnormal operation, these

must be appropriately handled as below:

• The contents of the warning/error message/guidance must

be checked for appropriateness

• The actions expected from the user should be evaluated

• The actions must be handled

These are handled by taking the parent component of the

modal dialog and checking and writing Script scripts to

evaluate the same.

1) Get Component ID of parent as well as child nodes

2) Compare if parent or child node belongs to class

“Widget Button”

3) If it belongs to the class “Widget Button” extract text

from item and store as variable

4) Click on the obtained text

IV.CONCLUSION

It can be concluded that efficiently running tests that

support the purpose of regression and confidence testing

are very important as they allow the manual Q&A to

concentrate on new features while itself taking care of the

regular workflow, sanity and load testing.

Towards this end a modular framework has been developed

and proved beneficial.

We have successfully been able to test various components

in the applications by using the various methodologies a

simple yet high level framework that serves the purpose in

scripting test cases in reliable, fast and efficient manner.

The Script support has allowed testing of various

complicated components. The availability of Java APIs has

provided greater flexibility in testing the various modules

of the software.

 V. FUTURE ENHANCEMENTS

Keyword-Driven Testing and Table-Driven Testing refer to

an application-independent automation framework. This

framework requires the development of data tables and

keywords, independent of the test automation tool used to

execute them and the automation script that "drives" the

System-under-‐test (SUT) and the data.

The captured logs are planned to be used for checking the

presence and expected actions using an upcoming

framework that recognizes these components and drives the

required (possibly rewritten to suit the needs of

automation) test case forward using suitable engine to

recognize the components and actions captured.

VI. BIBILIOGRAPHY

[1] “Empirical Observations on Software Testing

Automation”, by Karhu K., Lappeenranta University of

Technol., Lappeenranta, Repo,Software Testing

Verification and Validation, 2009. ICST 2009

[2] “Reconciling Manual and Automated Testing” by

Andreas Leitner, IlincaCiupa, Bertrand Meyer, Chair of

Software Engineering, Department of Computer

Science, ETH Zurich

[3] “Applying Model-Based Testing to Healthcare

Products” by Marlon Vieira, Xiping Song et alpublished

in 30th International Conference on Software

Engineering, 2008. ICSE '08. ACM/IEEE

[4] “Global Software Test Automation” a book by Hung

Q. Nguyen, Michael Hackett and Brent K. Whitlock

[5] “Guidelines to create a Robust Test Automation

Framework” Alliance Global Services 2009

[6] “Why Model-Based Test Automation is Different and

What You Should Know to Get Started” by Mark

Blackburn, Robert Busser, Aaron Nauman

[7] “A Survey of Unit Testing Practices” by Per Runeson,

of the Lund University published in IEEE Software

[8] “Software test and Quality assurance 5%” by Hans

Buwalda published in The STP magazine

[9] “Building Your Dream Team” by Hans Buwalda tells

published in The STP magazine

[10] “Automated GUI Interface Testing” by LR Kepple, DC

Laroche, MH Parker published as US5781720 grant

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS060677

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 06, June-2015

652

