
Development Of Master GUI Of “MODBUS Over Serial Line ASCII Mode Protocol”

Using Labview
tm

 For Data Acquisition

Nital Patel

Assistant Professor

Nirma University, Ahmedabad

Chintan Desai

M.Tech. (Control and Automation)

Nirma University, Ahmedabad

Abstract

A GUI tool is developed in the LabVIEW
TM

 to

support the functionalities like read register, write

register and write multiple registers. The GUI tool

developed can be useful for testing the health of the

MODBUS slave devices by using test mode. The tool

is also useful for continuously monitoring the on field

parameters by running the tool in auto mode. In auto

mode the MODBUS Master GUI tool continuously

send query for reading particular registers to the

slave devices connected to the serial port selected by

the user in the tool. The values of the registers read

by the Master Module are displayed in the chart.

User can select the Baud rate, parity checking,

Number of data bits and time out. The Master GUI is

tested and validated by the slave simulator available

at [1].

1. Introduction
MODBUS is a serial communications protocol

published by Modicon in 1979 to use it with its

PLCs. It has now become a de facto standard

communication protocol. Its development with

industrial application kept in mind and being

published openly free of royalty, made it very

popular. This document describes the MODBUS over

Serial Line protocol. MODBUS Serial Line protocol

is a Master-Slave protocol. This protocol takes place

at level 2 of the OSI model. A master-slave type

system has one node (the master node) that issues

explicit commands to one of the "slave" nodes and

processes responses. Slave nodes will not typically

transmit data without a request from the master node,

and do not communicate with other slaves.

At the physical level, MODBUS over Serial Line

systems may use different physical interfaces

(RS485, RS232). TIA/EIA-485 (RS485). Two-Wire

interface is the most common. As an add-on option,

RS485 Four-Wire interface may also be

implemented. A TIA/EIA-232-E (RS232) serial

interface may also be used as an interface, when only

short point to point communication is required [2].

2. MODBUS ASCII Mode
In case of MODBUS ASCII mode each hex byte

of RTU mode frame is converted in two 7 bits ASCII

characters. For e.g. 0x30 of the RTU mode is

converted into „3‟ and „0‟. Other than that for

MODBUS ASCII mode frame begins with „:‟ and

ends with CR/LF. Further the ASCII mode uses LRC

checking for the communication error in the received

frame. [2]

2.1. MODBUS Master State Transitions
MODBUS master Transition state begins with idle

mode. When master needs to send query to the slave

it frames the query frame following the MODBUS

protocol [2]. The frame is than sent to the lower

physical layer and sent via communication channel to

the slaves. It should be taken care of that baud rate,

parity and line coding must be same on the both the

side.

Once the Query is framed and sent to

communication channel the master now waits for the

response from the slave to which the query has been

sent. The master waits for the predefined time

interval for the response to be received. Once the

timeout occurred the master will assume that

communication error has been occurred and will take

1692

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

necessary action. Master may resend the query or

master will go to idle state.

When master receives the response, it processes

the response. First it checks the LRC field if LRC is

not matched than master will discard the frame and

goes to the idle state. If LRC is matched than it

checks for the address field. If address field is not

matched than master discards the frame and goes to

the idle state. If address field is matched than the

master processes the other fields and takes necessary

action.

3. Master Module Architecture And

Functionality
The Master module designed in LabVIEW

TM

works in either continuous mode or test mode.

3.1. Continuous Mode
 In case of continuous mode, the master first sends

Query to the slave with the slave ID 0x01 for reading

holding registers addressed from 0 to 3. The master

now waits for the response till the timeout value

defined by the user occurs. If timeout occurs before

the response frame is received than “frame not

received” message is displayed in the message

window of the slave ID 0x01. If frame is received

than the frame is processed and LRC and slave ID

and function code field is than checked, If any of the

three is unexpected than corresponding message is

displayed on the message window. If these three

fields are same as expected by the master than the

master further process the other fields and extracts

the values of the register for which the query was

sent. The extracted values of the register are first

converted in to the hex value as it was received in

ASCII character format. The hex value is converted

in the decimal value and displayed on the chart.

Irrespective of the response received the master sends

the query to the slave ID 0x02 for reading the same

holding registers as in the case of with the slave id

0x01. The same procedure is followed for the slave

ID 0x02 as well. This process continuous till the stop

button is pressed or the execution of the program is

terminated. The response received by the master is

processed.

3.2. Test Mode

Test mode of the master GUI supports 3 MODBUS

functions. 1) Read Holding Registers. 2) Write Single

Register. 3) Write Multiple Registers.
 User is allowed to select the slave ID to

which he/she intends to send the query frame. After

selecting slave ID, user selects the one of the function

code tab. If user selects read register tab, than in that

tab user needs to select number of register he wants

to read and the starting address of the holding

register. After selecting these two parameters user

needs to execute the file. The Master GUI will create

the MODBUS ASCII over serial frame and send itto

the communication channel (COM PORT). The slave

after receiving the query frame responds to that query

frame. The response is either a normal response or an

exception response. When Master receives the

normal response, the values of the registers are

displayed on the register indicator window. The

message window displays the message “normal

response received”. When master receives exception

response the message window displays the exception

number and the meaning of that exception [2].

 Similarly, for the queries „Write Single Register‟

and Write Multiple Register‟ user selects the address

and the values to be written. The message window

describes the nature of the response i.e. either normal

response or exception response.

In case of timeout occurs before the frame is

received the message window displays the “Frame

not received”.

4. Experimental Setup For Modbus

Validation

4.1. Physical layer

A MODBUS slave simulator [1] is used to validate

the authenticity of the master designed in the

LabVIEW
TM

. MODBUS slave simulator trial version

is available for 30 days. The link for the same is

given in the Reference.

Two PC‟s are connected through serial COM

PORT thus establishing RS232 physical layer. One of

the connected PC is used to run the MODBUS

Master GUI prepared in LabVIEW
TM

 and the other

PC runs the MODBUS slave simulator.

4.2. Results

1693

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig. 1 Master module front panel for auto
mode.

fig. 2 Slave simulator, holding register

values

The figure 1 shows the front panel tab for the

auto mode. The chart box for reading the holding

registers addressing from 0 to3. The provision of

the similar tab is provided for the reading the

same registers for the slav ID 0x02.

The figure 2 shows the values of the holding

registers for the slave ID 0x01 and 0x02. As

shown in the figure 3 after the starting of the

execution of GUI the values of the registers are

displayed on the chart. The figure 3shows the

register values for the slave ID 0x01. The same

visuals are also available on the tab for slave ID

0x02

Fig. 3 Display chart for slave ID 0x01 on

MODBUS master

The figure 4 shows the front panel for the test

mode. As shown in the figure the test mode panel

provides facility to query the slaves with different

ID‟s. It has capability to send the query for 3

different functions. It supports function code

0x03(read holding register), 0x06(write single

register) and write multiple register(0x10).

Fig. 4 Front panel for test mode

The figure 5 shows the current register content

of the slave ID 0x01. Figure 6 shows the same

content value read by the master and shown in the

register window. In the figure 7 the query for

writing holding registers 0 to 9. The register value

changed in the slave simulator. The changed

values of the registers are shown in the figure 8.

Fig. 5 Register content of the slave ID

0x01

1694

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig. 6 Result for test mode query ‘read

register’

Fig. 7 Result for test mode query ‘write

multiple register’

Fig. 8 Changed content of the slave
holding registers after query ‘write

multiple register’

If we try to read or write the register that is not

supported by the slave, the slave sends the

exception response. The master then displays the

message for the exception. In this test example

the slave only supports holding registers 0 to 9 so

if user tries to read or write other than those

registers then slave simulator send exception

response. Figure 9 and 10 shows the result of

exception response for read register and write

register respectively.

Fig. 9 Exception received for the query

‘read registers’

Fig. 10 Exception received for the query

‘write registers’

5. Conclusion

The Master module developed for the MODBUS

over Serial Line ASCII Mode Protocol is quite useful

for the process data monitoring. The module can

continuously monitor the process data from the

different slave connected on the serial line using

MODBUS ASCII protocol. Further development in

tool may allow process parameters to be controlled in

the close loop rather than just monitoring.

6. References

[1] http://www.modbustools.com/download.asp

[2] MODBUS over Serial Line Specification and

Implementation Guide V1.02

http://www.modbus.com/docs/Modbus_over_serial_line_V

1_02.pdf

1695

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

