
Diagnostic Protocol Stack on LIN Interface

Jeevan Peter Dsouza,

 Student

Dept. of PG Studies, UTL,

 VTU Extension Center,

Bangalore, India

Ramana Reddy
Assistant Professor,

 Dept. of PG Studies, UTL,

 VTU Extension Center,

Bangalore, India

Dr. Siva Yellampalli
HOD,

Dept. of PG Studies,

UTL, VTU Extension Center,

Bangalore, India

Abstract - This paper deals with design, implementation and

testing of ECU diagnostic protocol stack on LIN2.0 interface

using Microchip 16F87X controller, sensors, actuators, current

drivers and signal conditioning circuits. Protocol stack intended

for use in vehicle networks applications, where transferring and

processing digital data at low costs and by low power

consumption is high priority. The diagnostic protocol stack

developed using low cost controller stands as an economical

solution which also reduces complexities associated with a

typical commercially automotive CAN, MOST or K-line stack

network. The implementation of diagnostic protocol stack using

CAN, MOST or K-line interface requires extra controller

functionality and also increases the area and cost of the system.

The ECU diagnostic stack core can be implemented with local

interconnect network interface and its suits for various Vehicle

network demands. The LIN interface based diagnostic protocol

stack core can be reduced to smaller size with optimizing code

and speed of execution with an appropriate implementation.

Keywords - Automotive,ECU,CAN,LIN,Diagnostic,Stack,Network,

Protocol, Drivers.

I. INTRODUCTION

LIN is a very popular and commonly used network
interface when connecting to an Electronic Control Unit
(ECU) with Sensors and Actuators in automotive systems.
When connecting an electronic control system to a vehicle
network for simple point-to-point communication, additional
network circuits and functionality is required, which came at
a high cost. Standalone processor or controllers are used to
implement the network protocol stack. Now with the existing
embedded technology it is feasible to implement an
application-tailored subset of a diagnostic protocol stack to
achieve a straight-forward and cost-effective connection to a
network. Although the Diagnostic protocol stacks can be
implemented on various numbers of network interfaces such
as CAN and K line, this paper will focus on the
implementation of ECU diagnostic protocol stack on local
interconnect networks interface [2].

The design handles multiple communicating network
node that is both physical addressing and functional
addressing. This project work streamlined for diagnostic
stacks of automotive embedded network system
requirements.

II. BACKGROUND

A. Protocol Stack
The Open Standards Interconnect (OSI) model is

theoretical and practical model which is used to describe the
behavior of a network stack and related communication
issues. The Open Standards Interconnect protocol stack
model consists of seven layers, But the ECU Diagnostic
protocol stack can be implemented using only physical, data
link, network and application Layers [7].

UDS,OBD2,KWP2000

(Application layer)

ISO15765

(Network layer)

LIN2.0

(Datalink layer)

RS232
(Physical layer)

Figure 1. Diagnostic Protocol Stack

B. Local Interconnect Network
The LIN is a serial network protocol used for

communication between sensors and actuators in vehicles.
The need for a cheap serial network arose as the technologies
and the facilities implemented in the car grew, while the
CAN bus is too expensive to implement for every component
in the car. The LIN nodes are implemented as ASICs or 8 Bit
Microcontroller. Supports the Low cost single-wire
implementation (Enhanced ISO-9141) and speed up to
20Kbit/s. LIN interface is based on Single Master or Multiple
Slave concept. LIN driver is low cost silicon implementation
based on common UART or SCI interface hardware [2].

Figure 2. LIN Frame Format

C. Network Level Protocols
The transmission of longer messages is made by

segmentation of data to be transmitted. A segmented message
is transmitted within a set of frames containing a complete
message of a diagnostic service. The first segment is called
First Frame, the following segment Consecutive Frame. A
flow control is used to adjust the sender to the network layer
capabilities of the receiver.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110793

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

1208

The units that are transported in a network layer frame are
called Packet Data Unit.

The PCI (Protocol Control Information) contains the
network layer flow control information. The PCI type Single
Frame (SF) indicates that the transported message fits into the
single PDU, i.e. it contains at maximum five data bytes.
Multi-PDU message is continued with a number of
Consecutive Frames (CF).If more than 15 CF PDUs are
needed to transport the complete message, the frame counter
is incremented [4].

Figure 3. Protocol Data Unit

D. Diagnostic Services
Diagnostic services are used by diagnostic tester tools in

vehicle communication links for accessing the ECUs
information. Services include accessing diagnostic faults
codes, read and write parameters, activate diagnostic or test
routines, and download or upload software and data. The
protocol to be used for accessing the ECUs by the diagnostic
tester will be in accordance to ISO 14229 or ISO 14230
specification.

The diagnostic services are grouped into control of
diagnostic sessions, Data Transmission, Stored Faults, Input
Output Control functional units and identified by Service
Identifier [1].

III. DESIGN AND IMPLEMENTATION
The diagnostic stack cores that are described in this paper

can be viewed as tailored subsets of the diagnostic stack and
one possible configuration is represented related to the OSI
model. Diagnostic protocols are normally structured in a
layered stack. The stack IS0-15765 at the network layer and
LIN driver interface at data-link. The Application Layer may
be a software or hardware application that communicates
with the used diagnostic core through the network layer.
Software application (UDS, KWP200, and OBD2) can be
implemented in a separate layer [1].

The Application, Network and Link Layers in the
diagnostic stack cores are designed and implemented using
Embedded C language. This means that the designs are not
restricted to a specific embedded controller.

Figure 4. Software Architecture Design

A. LIN Driver

 The UART implementation of the LIN protocol is the

most efficient way of implementing a LIN driver since the

UART contains much of the hardware support for

generation of LIN bytes, i.e. start bit, 8-data bits, and stop

bit format. The first problem to solve for LIN driver

implementation using a UART is that of generation of the

synchronization break. The maximum number of bits that

can be driven to dominant with the UART is 10 bits.

Therefore, to generate the synchronization break, a

different strategy is used. The synchronization break is

generated by changing the value in baud rate register, so

that the baud rate is effectively decreased. Therefore

writing 0x00 to the UART will result in synchronization

break. After the synchronization break is generated, the

baud rate is set to the original value for transmission of

the synchronization byte and identifier [5].

B. LIN Receiver

LIN receiver manages incoming packets and check for a
new packet. Once a new packet is detected the packet will be
saved byte-wise to the Receiver FIFO. Each byte is also sent
to the CRC checker, which calculates the LIN receive frame
checksum. When the end of frame is signalled from the LIN
the CRC check will be completed and the destination address
will be verified. Only node addresses that matches the core
address and broadcast addresses are accepted. If the packet
node address check fails the packet will be rejected by LIN
receiver.

C. LIN Transmitter
The Transmitter will check for a send flag from one of the

packet types. The Transmitter reads data from the Transmitter
FIFO and puts out the transmit packet to the physical data bus
and sets control signals. Each byte is sent to the frame CRC
generator, which calculates the checksum. When the packet
maximum length is reached the calculated CRC is sent along
with data bytes.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110793

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

1209

D. FIFO

The Receiver FIFO temporarily stores the received packet
i.e. including the whole frame with LIN header, Diagnostic
header etc. Packets with incorrect addresses will be filtered
out in the Receiver and are not stored in the Receiver FIFO.

The Transmitter FIFO temporarily stores the entire
packet, i.e. including the whole frame with LIN header, IP
header etc., which shall be transmitted.

E. PDU Composer/Interpreter
The protocol data unit composer and interpreter module

are the main control blocks in protocol stack, which are
closely related to each other. The composer and interpreter
checks that the incoming packet is valid, manages diagnostic
frame in both directions, manages diagnostic requests, and
generates diagnostic responses. The frame checksum will
always be calculated for transmitted packets by the packet
composer. The checksum calculation is based on CRC and is
executed in parallel with the data copy to the transmitter or
receiver FIFO from the application layer respectively from
the receiver [4].

F. Core Drivers

Core drivers are very specific to the processor. The Core
drivers includes basic software modules like DIO Driver,
UART Driver, Analog Driver, PWM Driver, EEP Driver,
FLASH driver etc. which are used protocol stack and
application handler to implement the customer requirements.

G. Application Handler

The application handler is responsible for implementation
of diagnostic services request and response. The application
layer also interact with core drivers to process the request
from diagnostic tester.

H. Scheduler

The Scheduler is responsible for time-sharing of CPU
among tasks. Typical RTOS based on fixed-priority pre-
emptive scheduler which assign each process a priority and
the scheduler runs highest priority process ready to run. Basic
time rate can be selected depending on the time critical
specifications and in this project it is 2ms.

IV. EVALUATION AND DISCUSSION

The system is designed and implemented on an embedded
system using Microchip PIC 16F87x controller [3].

Physical layers is designed for single-wire or two-wire
bus systems. Design provides interface between diagnostic
tool and microcontroller. Physical layer is designed to meet
diagnostic systems ISO-9141-2 specification. The ISO 9141-
2 interface is 19.2 Kbit/s, single-wired interface compatible
with UART or SCI. The interface adapter serves as an
electrical converter between ISO 9141-2 and RS 232.

The ISO model specifies the requirements for the
diagnostic Protocol stack on which one or several on-vehicle
Electronic Control Units are connected to an off-board tester
in order to perform diagnostic functions. The protocol made
by a whole set from the physical layer to the upper
application is called communication diagnosis protocol stack
in order to realize the communication mechanism and certain
function between diagnosis tool and control systems.

Diagnostic stack core consist LIN2.0 driver interface, ISO
15765 network layer, and Diagnostic services. The proposed
small point-to-point network architecture diagnostic core
system utilizes logic sharing of the PDU Composer and PDU
Interpreter parts of the design. In this network protocol
system the application layer can be implemented directly in
software and thus omitting the need for an external chip [6].

The network layer performs the transmission and
reception of longer messages. The transmission of messages
is made by segmentation of data to be transmitted. Segmented
message is transmitted within a set of frames containing a
complete message of a diagnostic service. The Data Link
layer is in charge of diagnostic LIN frames. The diagnostic
message length is hold in the Protocol Control Information.
Handle the transmission requests from the network, load and
activate the transmission channels in the LIN driver.

Figure 5. System Block Diagram

V. CONCLUSION

 Embedded system design requires decisions regarding

simplifications, parallelization, functionality, performance

and configuration. The following issues must be considered

when designing a diagnostic protocol stack core that is

allowed logic utilization, network speed, and number of

simultaneous communicating network nodes, limitation of

packet loss, supported protocols, duplex mode and size of

packets.

1. Physical testing verified that the implementation works

correctly in a multi-node LIN network which supports

synchronization mode that allows it to adjust its baud

rate automatically. The node to node communication

process can be handled independently by the LIN

module and the complete microcontroller based system,

when implemented it supports the maximum LIN bit rate

of 19200 bps.

2. Functional testing verified that the network composed of

these nodes can communicate with each other and each node

correctly raises error conditions. This testing also verifies that

the diagnostic service commands and tool interface functions

correctly for both physical addressing and functional

addressing of nodes.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110793

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

1210

3. Customer application like UDS, KWP2000 and On-Board

Diagnostics can be implemented on diagnostic stack which

the reduce costs, and thus presenting a truly reconfigurable

system. The core is preferred for point-to-point networks and

allows a simple application that offers a cost-effective on-

chip solution. The solution gives a reliable and flexible

protocol stack core suited for automotive networks.

4. The ECU diagnostic protocol stack fit the design in a cost-

effective device and reduces to smaller size by adapting the

design to the network system requirements.

5. The Diagnostic stack should be customized when

specifying the entire automotive embedded network systems.

REFERENCES

[1] P Dzhelekarski and D. Alexiev ” Reading diagnostic data from
vehicle OBD2 system “ Submitted for publication at 14th
International Conference , 2005.

[2] Georgi Krastev ,"Microcomputer Protocol Implementation at
Local Interconnect Network " , Computer Systems and
Technologies - CompSysTech ,International Conference 2004.

[3] Martin Bates, “Interfacing PIC Microcontrollers - Embedded
Design by Interactive Simulation” Second Editon, Copyright
@2006 Martin Bates. Page 35, 55.

[4] M Yusairi, B Abu, K Abe “ Hardware Design and
Implementation of IP-over-1394 Protocol Stack and Its
Evaluation “ Technical Report of IPSJ, Vol.IAC2002, No.5,
Page 51-58, Mar. 2003.

[5] FANG Yi-Yuan , “Design and simulation Of UART serial
communication Module Based on VHDL”,2011.

[6] K Morita, K Abe, " Implementation of UDP/IP Protocol on
FPGA and Its Performance Evaluation " IPSJ General
Conferance. Special, Pages 157–158.

[7] Y Izuhara, K Morita, T Tateoka, K Abe , "Specification of
TinyIPv6 Protocol Stack for Remote Control and Its
Implementation on FPGA " IPSJ Journal,Vol.43, No.11, Pages
3540-3548, 2002

[8] Yongxiang Guo, Wu Deng, “Design of Network device driver
in embedded Linux system ”, IEEE International Conference
on Computer Application , ICCASM 2010.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110793

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

1211

