
Different Policies for Dynamic Load Balancing

Mohammad haroon Dr (prof) Mohammad Husain

Research scholar (AIET)

TMU mordabad lucknow

Abstract

Many issues involve in dynamic load

balancing such as how to measure the

load of processing elements, how should

load information we should collect and

where the load is reside. How the real

activity happening the different

algorithms, these issue are usually

grouped into several policies or

component .we consider the dynamic

load balancing algorithms consist of four

component: a load measurement rule,

and information exchange rule, load

balancing operation, an initiation rule

(define by location rule, selection rule,

distribution rule) these issues are also

group into a transfer policies, selection

policies, location policies and

information policies.

Key words: Load measurement, load

information exchange rule load

balancing operation.

Load measurement policies: measuring

of load of every node is very important

or the load balancing algorithms.

Measuring the load in distributed system

is very difficult task. Usually load is

measure by metric these can be divided

into two parts, Simple load indices and

complex load indices

Simple load indices:

 These consist the load on only single

resource. These approaches only focus

on the load on the CPU. Simple load

indices include processor queue length

over a given duration, the amount

memory available, the context switch

rate, the system call rate, CPU

utilization.

 Complex load indices: these consist a

number of parameter, each relating to a

single resource, such as CPU, disk,

memory and network the load indices

comprise the CPU load and the amount

of free memory and number of

concurrent user use the same node,

paging rate, and the amount of ideal time

at processing node. The load indices

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

should be easily to compute and

correlate with the parameter e.g response

time that is to be minimized. in a

heterogeneous systems, the load indices

from different node must be adjusted to

make them comparable, for example if

two different node have different

processing power, their CPU utilization

may have to divided by their processing

power to compare their CPU utilization

load indices value .

Load information exchange policies:

Information polices are responsible to

collect all node information, it also

decide what information is collected and

when information is collected. the load

information exchange policies can be

broadly classified into three types.

Demand policies: Every node collects

information when it needs and it to make

a load sharing decision. A poll-limit is

usually used. The main advantage is that

load information is exchanged only

when it is required.

Periodic policies: Information is

distributed or collected at regular time

intervals. This is simple to implement.

However, it is important to determine

the most appropriate distributions time

period as overheads due to periodic

communication Increase system load and

reduce scalability. Here, a fixed amount

of state collection overhead will be

induced in the system because each node

collects and maintains state-information

of other nodes, regardless whether this

information will be used. However, there

is no polling delay when a task must be

transferred.

State change policies. State-change

policies generally have lower

communication rates than periodic

policies. However, if the state at a

particular node does not change for a

long period of time, the information held

about that node will become stable.

load-state information is unreliable,

since there is no way of telling if the

node has crashed or has just not sent a

message due to a steady state. A newly

joining node will not receive information

concerning steady-state nodes, even if

those nodes are suitable transfer

partners. One way to improve the basic

state-change policy is to introduce

additional distributions messages, which

are sent if the load-state does not change

for a long period of time. These rules

differ from demand-driven rules in that

each node takes the initiative for

distributing its own state instead of

collecting other nodes information.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Where the load should be maintained?

 Central approach: central approach

can be used to calculate load-state

information. This is collected from all of

the nodes in the system and made

available when a load-sharing decision

must be made. Some centralized nodes

are simply responsible for the collection

and distributing of information, while

others additionally act as matchmakers

between sender and receiver nodes.

Centralized node can work well in small

or moderately sized systems, but can

become communication bottlenecks

when the system is scaled up. Where

centralized components are used in the

entire system, that system is vulnerable

to the failure of the single component

unless some form of backup or

replication is provided, this increases

complexity.

Distributed approaches: Distributed

approaches are more difficult to build

than their centralized counterparts. The

semantics involved can be complex.

Each node collects information

concerning the load state at other nodes

in the system. Nodes autonomously base

load sharing decisions on the

information they hold. One advantage of

distributed implementations is that the

system is not vulnerable to the failure of

any single node. There are also

disadvantages there is no consistent

system wide view of state, and each

node holds different information

depending on which other nodes it has

communicated with, how recently that

communication took place, and the delay

experienced in that communication. This

can lead to instability if there are

significant differences in the views held.

How the load is collected?

First option collects the load from all

systems. Another opinion is to divide the

whole distributed systems into number

of cluster and then collect the load from

different cluster then finally calculates

the over all load from all the clusters.

The choices in between these two

extremes use local load information

collected from a certain domain of

processing nodes in which size may be

either fixed or variable. The global

knowledge of the system’s attributes

(like the total work load) is prohibitive,

due to the communication overhead

produced. This is true for large-scale

distributed systems. Thus, the technique

of demanding global information is

rejected, and partial information is used

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

instead, such as information of the

neighborhood of a node.

Transfer policy:

A transfer policy determines whether a

node is in a state to participate in a task

transfer, either as a sender or a receiver.

Many proposed transfer policies are

threshold policies, which may be either

based on fixed or adaptive thresholds.

One way is to set one threshold value for

the load imbalance (the difference

between the largest and smallest loads

on the nodes). If the detected load

imbalance is bigger that a present

threshold value, the transfer is initiated.

An equivalent method to this is to set

two threshold values, T1 and T2 by

which the nodes are classified into three

types, i.e., heavily loaded or sender (if

loads higher than T1), lightly loaded or

receiver (if loads lower than T2), and

normally loaded otherwise . Depending

on the algorithms, T1 and T2 may or

may not have the same value. The choice

of these thresholds is fundamental for

the performance of the algorithm.

Clearly, the best threshold values depend

on the system load and the task transfer

cost. At low loads and/or low transfer

costs thresholds should favor task

transfers, while at high loads and/or high

transfer costs remote execution should

be avoided. Although states that the

optimal threshold is not very sensitive to

system load, and present techniques that

efficiently and in run-time adapt the

threshold to the system load. Fixed

threshold policies mean that the

threshold values are not changed when

system loads are changed. There are

disadvantages with the fixed threshold

policy. If the fixed threshold value is too

small, this still causes “useless” job

transfers. If the fixed threshold value is

too large, the effect of using a load-

balancing mechanism may be reduced.

Other than using fixed threshold values,

thresholds can be set in an adaptive

(relative) fashion, by adjusting them

when the global system load is changed.

if the load of an individual node is above

or below the average load over a certain

domain (either the global or some local

range) by a preset percentage, then load-

balancing actions are initiated and load

is balanced either locally or globally. In

another adaptive approach to

determining proper thresholds, the

average load Lavg is determined first.

Two constant multipliers, H and L, are

used in computing the heavy threshold,

T1, and light threshold, T2. H is greater

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

than one and L is less than one. These

two values determine the flexibility and

the effectiveness of a load-balancing

mechanism. The heavy threshold, T1, is

computed as the product of H and L

average. Similarly, the light threshold T2

is computed as the product of L and L

average.. The transfer policy may be

either periodic or event-triggered. The

algorithm may periodically check

whether the node’s state qualifies itself

as a candidate for a task transfer.

Selection policy: The role of selection

policy is to select tasks for transfer. In

sender-initiated schemes, busy nodes

choose tasks to transfer to another node,

whereas in receiver-initiated schemes,

lightly loaded nodes inform potential

senders of the types of task they are

Willing to accept. The policy determines

how much load, or how many tasks, to

transfer. A task transfer may be

preemptive or non-preemptive.

Preemptive transfers involve transferring

a partially executed task. This is

generally expensive, as it involves

collecting all of the task’s state. Non-

preemptive task transfers involve only

tasks that have not begun execution and

hence do not require a transfer of the

task state. A node may be overloaded

and have no tasks available for no

preemptive transfer if it is polled by a

receiver. A selection policy should

consider at least three factors. The

overhead incurred in transferring the

task should be minimized. No

preemptive transfers and small tasks

(small amounts of information) carry

less overhead. The execution time of the

transferred task should be sufficient to

justify the cost of the transfer. Even if

task execution is unknown, it should be

possible to classify the tasks as short or

long tasks, and to consider only the long

tasks for migration. Some classification

errors might be tolerated as load-

balancing algorithms are quite robust

with regard to this parameter. The

number of location-dependent resources

needed by the selected task should be

minimal.

Location policy: The responsibility of

location policy is to find a suitable

transfer partner. Location policies can be

distributed, each node selecting a

transfer partner on the basis of locally

held information. Location policy,

corresponding to information policy,

specifies the balancing domain for load-

balancing actions; this could be global,

nearest-neighbors, a group of random

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

polled nodes, or a set or cluster of nodes

based on specified criteria. Alternatively,

policies can be devised using a central

information source. Busy nodes attempt

to locate transfer partners that have low

load levels in sender-initiated schemes.

in receiver-initiated schemes, low-loaded

nodes attempt to locate a busy node from

which to transfer work. Five typical

policies are listed below.

Existing load-balancing algorithms:

Two classes of well-known dynamic and

distributed load-balancing algorithms are

presented in this section. The focus is on

the load-balancing algorithms utilizing

partial information to make decision.

Although some algorithms are initially

presented for parallel computers, they

are applicable in a distributed computing

system with more or less deficiencies.

Thus, these are also introduced here.

Most load-balancing policies execute

two activities that require

communications: distribute its own load

information and collect other nodes

information and transfer tasks. If each

node is required to interact with other

nodes, it will have to use mechanisms

such as broadcast, global gathering,

long-distance communication which are

not scalable and create intolerable

overhead or congestion in systems with a

large number of nodes. To reduce this

overhead, in many policies, a node only

exchange information and transfer tasks

to its physical and/or logical neighbors’.

These are usually called “neighbor-

based” load-balancing algorithms.

Clustering is another technique to tackle

the problem. The nodes can be

partitioned into clusters based on

network transfer delay, where load-

balancing operates on two-level: intra-

cluster and inter-cluster via cluster

managers or brokers. These are usually

called “cluster-based” load-balancing

algorithms. We will give corresponding

discussion to these two classes of

algorithms below.

Neighbors-based load-balancing

algorithms: The neighbors’-based

approach is a dynamic load-balancing

technique that allows the nodes to

communicate and transfer tasks with

their neighbors’ only. Each node

balances the workload with its

neighbors’ so that the whole system will

be balanced after a number of iterations.

Since this technique does not require a

global coordinator, it is inherently local,

fault tolerant and scalable. Hence, this

approach is a natural choice for load-

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

balancing in a highly dynamic

environment. Among of the neighbor-

based algorithms, we are interested in a

couple of typical representatives,

described as follows.

The gradient model: The gradient

model (GM) is a demand driven

approach. The basic concept is that

under loaded nodes inform other nodes

in the system of their state, and

overloaded nodes respond by sending a

portion of their load to the nearest lightly

loaded node in the system. The resulting

effect is a form of relaxation where tasks

transferring through the system are

guided by the proximity gradient and

gravitate towards under loaded points.

The scheme is based on two threshold

parameters: the Low-Water-Mark

(LWM) and the High-Water-Mark

(HWM). A node’s state is considered

light if its load is below the LWM,

heavy if above the HWM, and moderate

otherwise. A node’s proximity is defined

as the shortest distance from itself to the

nearest lightly loaded node in the

system. All nodes are initialized with

proximity of Wmax, a constant equal to

the diameter of the system. The

proximity of a node is set to zero if its

state becomes light. A node’s proximity

may not exceed Wmax. A system is

saturated, and does not require load-

balancing if all nodes report proximity of

Wmax. If the proximity of a node

changes it must notify its near

neighbors’ gradient map of the

proximities of under loaded nodes in the

system serves to route tasks through the

system in the direction of the nearest

under loaded nodes. A task continues to

transfer until it reaches an under loaded

node or it reaches a node for which no

neighboring nodes report a lower

proximity.

 Contracting within neighborhood: In

thee contracting within Neighborhood

method, two parameters need to be

specified to make the contracting

decision, minimum hops and maximum

hop. Here, minimum hops specify the

minimum number of hops needed for a

drifting task to travel before it settles

into the standing state. This parameter is

used to ensure a newly created task will

travel certain distances to reduce the

horizon effect. The other, maximum hop,

is the upper limit of travelling distance

of a drifting task. It ensures that each

newly created task will be sent only to a

node within a fixed radius neighborhood

from its source node. It prevents

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

unbounded message oscillations, and

also induces locality which makes the

communication between the creating and

created tasks efficient. They keep track

of the number of hops travelled so far for

each task c, called c.hops. Thus, at each

node, for a drifting task c, which is either

created by themselves or received from

other nodes, we have the following

cases: if c.hops < minimum hops, a node

will contract task c to its least loaded

neighbor no matter its own load; if

c.hops > maximum hop, task c will be

retained locally, added to the local pool

of messages, terminating its drifting

state. Otherwise, the task will be

contracted conditionally: if the load on

the least-loaded neighbor is smaller than

its own load, the task is contracted out to

that neighbor. In this way, the newly

generated task c travels along the

steepest load gradient to a local

minimum.

Summary: This paper has provided an

extensive overview of existing load-

balancing methods, with a focus on

decentralized load-balancing approaches

utilizing partial information to make

decisions. As discussed, existing

decentralised techniques, which rely on

neighbours or clustering, are not

applicable in a large-scale heterogeneous

computational grid. The survey pointed

out opportunities for improving the

performance of decentralised load-

balancing algorithms,

References:

1. Foster, C. Kesselman (Eds.), The

Grid: blueprint for a new computing

Infrastructure, Morgan-Kaufmann

Publishers, 1
st
 Edition 1999, 2

nd
 Edition

2009.

2. Casanova, arnand legrund, and yves

Robert, parallel algorithms, CRC press

London

3. W. M. Jones, L. W. Pang, D.

Stanzione, W. B. III. Ligon, Job

communication Characterization and its

impact on meta-scheduling co-allocated

jobs in a minigrid,in: Proceedings of the

18th International Parallel and

distributed Processing Symposium, 26-

30 April 2008, pp:253-260.

4. Foster, C. Kesselman, S. Tuecke, The

anatomy of the Grid: enabling scalable

Virtual organizations, The International

Journal of High Performance Computing

Applications 15 (3) (2001) 200–222.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

