

 Digital Implementation of Signal Generator
Patel Ashish

The Maharaja Sayajirao University of Baroda

Abstract

Function generators are used as signal source in

development, test and repair of electronic

equipment and circuits in laboratory. These

function-generators use active and passive

components to generate waveforms like sine wave,

pulse wave, triangular wave and ramp waveform.

So, limited numbers of waveform can be generated.

Sometimes we need to generate complex shaped

waveform for testing purpose e.g. 3
rd

, 5
th

harmonics, exponential function etc. These

functions can’t be realized with function generators

available in laboratory. So, function generator is

designed with microcontroller where the equation

of function can be stored and calculated. These

arbitrary waveform generators, or AWGs, are

sophisticated signal generators which allow the

user to generate arbitrary waveforms, within

published limits of frequency range, accuracy, and

output level. Unlike function generators, which are

limited to a simple set of waveforms; an AWG

allows the user to specify a source waveform in a

variety of different ways.

1. Introduction

Signal generator is designed and implemented to

generate waveform of any shape which can be

described in its mathematical equation. To generate

periodic waveform of given equation, frequency

and amplitude are required. The amplitude can be

change easily by the gain of the amplifier. But,

changing the frequency is not as simple as

amplitude with microcontroller.

Frequency is very important parameter for any

waveform. To generate waveform with

microcontroller and DAC, two types of timing have

been considered. One is the time period of the

waveform and another is the sampling time

(Nyquist criterion).

Atmega32 microcontroller is used for

implementation purpose because of its RISC

architecture which facilitates single clock cycle

execution.

As the function generator is implemented in the

microcontroller, a buffer is required in the

microcontroller to hold the sample values. Samples

are calculated for the whole cycle and are stored in

the buffer i.e. in the RAM of the microcontroller.

From this buffer, data is fetched and transferred to

the DAC port and pointer to the next sample data is

updated every time. After completion of one cycle,

i.e. one time period, and pointer is updated to the

start of the buffer and this process is repeated

again. Also very importantly, the timing calculation

is done by the microcontroller before storing

samples in the buffer to generate the waveform of

desired frequency. Interrupt is generated from user

interface (keys) to change the frequency and/or

shape of the waveform. When interrupt is arrived to

generate different waveform then, buffer is filled

with the samples values calculated for new

frequency and/or new shape.

Sampling time, Ts, is the optimal period between

two samples. Since this signal generator is

implemented in the microcontroller, time is

required to take data from the buffer where the

samples are stored, and then output the data to the

DAC port, and digital to analog conversion. DAC

was selected in such a way that its conversion time

is less than the sampling time.

2. DESIGN CONSIDERATION

Let, f is the frequency of the waveform that is to be

generated. Thus, Numbers of samples required

In microcontroller memory is of limited size. So

the buffer which is designed to store the sample

values of the waveform has some maximum

capacity, BUFFER_MAX_SIZE, and its size is not

infinite. For example consider the frequency of the

waveform is 2 Hz and the sampling time of the

microcontroller is 2us. So the samples required are

250000 according to the

943

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110410

Figure 1: Calculating numbers of samples

above formula of N and therefore 250kB of

memory is required in the microcontroller, which

may not be available. For atmega32, which is used

to design this signal generator has maximum

memory of 2kB (SRAM). Also, if frequency

further decreases then the required samples and

hence the size of the buffer required will increase.

So theoretically we need and microcontroller with

much large memory to generate the waveform of

very small frequency.

Figure 2: RAM storage in microcontroller

Another practical problem in implementing this

signal generator occurs at the high frequency. As

microcontroller and DAC are used to design the

signal generator, there is the finite delay between

two samples. In microcontroller it cannot be made

to zero because of finite time required to fetch the

sample from buffer to port and DAC conversion

time. So the sampling frequency has maximum

upper limit. In above example sampling time is

assumed to be of 5us. So the Nyquist sampling

frequency is 200 kHz. So from Nyquist criterion

we cannot generate waveform whose frequency is

above 100 kHz. Also, from the above equation 1, it

is seen that as the frequency of waveform increase

the samples N is decreases. But samples are not

allowed to decreases so much so that the output is

distorted. So sampling time Ts must be decreased

to sustain sufficient samples for high frequency

waveform.

Figure 3: Sampling of high frequency waveform

3. PRACTICAL ISSUES IN GENERATING

WAVEFORM WITH MICROCONTROLLER:

3.1 LIMITED BUFFER SIZE (LOW

FREQUENCY)

Figure 4: Large numbers of samples

In microcontroller, the memory is of limited size.

So the buffer to hold the samples is also of limited

size. Maximum buffer size that can be allotted in

microcontroller is assumed to be

BUFFER_MAX_SIZE in further discussion. Low

frequency implies greater time period. So N might

become very large to overflow the buffer. So

maximum time period of the waveform can be

[MAX_BUFFER_SIZE * Ts (Sampling Time)]

.Here frequency will be minimum. So, limited size

of buffer limits the minimum frequency that can be

generated. To overcome this problem delay

between two samples is added deliberately, i.e. the

sample time is increased. In equation 1, sample

time Ts is replaced by (Ts + nTs), where n is an

integer value. So the new sampling time Te =

(1+n)Ts .

Here, the sampling time is increased by the factor

of (1+n). Now, how the best value of n for given

944

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110410

frequency is decided? For that, firstly it is number

of the samples is assumed to be the size of

available buffer, i.e. BUFFER_MAX_SIZE. It is

assumed so to utilize the whole buffer and produce

maximum numbers of samples. This

BUFFER_MAX_SIZE is put in above equation and

we solve that equation for n.

Figure 5: Reduced number of samples

In case of rational number, n is rounded to the next

integer number. It must be done because the

register in the microcontroller is used to hold this

count value n. And only integer values can be

stored in it. So n must be rounded to the integer.

Also n must be rounded to the next large integer.

For example if n turns out to be 2.42 then it is

rounded to 3 or greater than 3, but not 2. Now

using this calculated value of n, equation (2) with

sampling time (1+n)Ts is solved for the number of

samples N, and actual buffer size required is

obtained, which is less than or equal to

BUFFER_MAX_SIZE, but still it is closer to

BUFFER_MAX_SIZE. So that, the available

buffer efficiently is used. In above example, if n is

rounded to 2 then number of samples increases the

BUFFER_MAX_SIZE.

For example, consider microcontroller clock

frequency is 16 MHz, sampling time Ts to be 10us,

BUFFER_MAX_SIZE to be 500, and the

frequency is generated is 2 Hz. Now using equation

1, if number of samples required is calculated,

which turns out to be 50,000.

And maximum buffer size is 500, which is 100

times less than the required samples. So, the

sampling time must be increased to decrease the

number of samples. Equation 3 is used to calculate

the integer value of n with number of samples

equals to the BUFFRE_MAX_SIZE, which turns

out to be 99.

Using this value of n, no of samples required is

again calculated, which is 500, i.e.

BUFFER_MAX_SIZE.

So the size of the buffer is efficiently used. If n is

not integer than it’s rounded up value is used to

calculate the total samples required, which is less

than BUFFER_MAX_SIZE, but never greater than

BUFFER_MAX_SIZE. Also, n greater than 99 can

be used in the above example and in that case also

the required buffer size turns out to be less than

BUFFER_MAX_SIZE. But it reduces the number

of samples. So to increases the low frequency range

of the digital signal generator, microcontroller with

large RAM must be selected.

So, low frequency limit can be expanded by,
1. Using the microcontroller which has greater RAM

memory.
2. Increasing sampling time interval between two

samples.

3.2 NYQUIST CRITERION (HIGH

FREQUENCY)

Sampling time Ts includes the time to take data

from buffer, output that data to DAC port and

update the index of the buffer. So there are finite

numbers of instructions that must be executed

between two samples. Hence, Ts has some finite

value. As the frequency that is to be generated is

increased, then from equation 1, number of samples

is decreases.

Figure 6: Small numbers of samples

To maintain the sufficient samples N, sampling

time must be decreased. But, Ts is the time required

to execute the instructions between two samples.

So how Ts can be decreased? One way to decreases

945

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110410

the sampling time is to optimize the code which is

used to generate the waveform, i.e. the code which

is written to take data from buffer and output that

data to the DAC port with minimum numbers of

instructions. So code must be highly optimized.

Another way to decreases the sampling time is to

increases the system clock frequency. As the

crystal with high frequency is used then the

execution time of the instruction decreases, which

in turn decreases the sampling time.

Figure 7: Increased numbers of samples

To calculate the numbers of samples for high

frequencies, equation 1 is used. For high

frequencies, N turns out to be less than

BUFFER_MAX_SIZE. So there isn’t any problem

regarding size of the memory of the

microcontroller.

For example, consider microcontroller with clock

frequency of 16 MHz, number of instructions that

must be executed between two samples is 80 and

frequency that is to be generated is 20 kHz. Here

RISC microcontroller is used to implement signal

generator. So every instruction executes in one

clock cycle. Now, the time to executes 80

instructions between two samples is (80/16000000)

= 5us. So the sampling time is 5us. Using

calculated Ts, numbers of samples N can be

calculated using equation 1, which turns out to be

10 and it is much smaller than the available buffer

size. So Ts must be decreases to increase N. In this

example code must be optimized i.e. number of

instructions that are executed between two samples

must be reduced because Ts decreases with

decrease in the instructions. Crystal frequency can

also be increased because Ts decreases with

increase in the crystal frequency. We cannot

decrease Ts as much as we required, because DAC

has some finite conversation time, which is of the

order of us to few hundreds’ of ns.

Ts can be minimized by,

1. Optimizing the code that is executed between two

samples (Generally data movement code).

2. Using the crystal with higher frequency to reduce

the instruction execution time.

4. SYSTEM IMPLEMENTATION

Algorithm to fill the buffer with samples calculated

from the equation of function f(x) and frequency of

the waveform. This algorithm is executed every

time when new function for wave shape and/or new

frequency to be generated is entered by user.

Figure 8: System Layout

Fill Buffer algorithm

Fill Buffer (Frequency, f(x)) {

//Calculate number of samples

//Decide which equation to use (Low frequency or

//High frequency equation) ……

If (Numbers Of Samples <=

BUFFER_MAX_SIZE) {

//High frequency

Register Count = 0;

 n = 0;

} else {

//Low frequency

946

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110410

Register Count = (int) n;

}

//Fill the buffer with sample values

For (i = 0; i < Number Of Samples; i ++) {

Buffer[i] = f ();

}

}

Algorithm to output data from the buffer, filled

with the sample values, to the DAC port. This

block of code executes at every sampling time

period Ts. Timer is used for generating sampling

time Ts.

Main algorithm

Main () {

 While (1) {

//register count is used for n

//After n iteration this loop will be executed

If (Timer completed = = true) {

If (i > = No Of Samples) {

i = 0;

}

DAC_PORT=BUFFER[i];

Timer completed = false;

}

}

}

Interrupt sub routine For Timer () {

//Timer for time period equals to Ts

If (Current Register Count == 0) {

Current Register Count = register Count (integer

value of n) + 1;

Timer completed = true;

} else {

Current Register Count--;

}

}

5. CONCLUSION

Implementing signal generator in microcontroller

provides great flexibilities to generate complex

shaped periodic waveform. It provides adequate

control on frequency as well as amplitude. One can

also use random function to generate noise for

testing purpose.

6. References

[1] Muhammad Ali Mazidi; 8051 microcontroller

and embedded systems; 2nd Edition, 2011.

[2] Jacqueline Wilkie, Michael Johnson and Reza

Katebi; Embedded system: An Introductory
Course; Palgrave Macmillan,2001

[3] Gayakwad. R.A, Op-amps and linear integrated

circuits;4th Edition, 2010

[4] Jouko Vankka ; Direct Digital Syaathesizer;

2nd Edition,2001
[5] Richard Barnett, Larry O’Cull and Sarah Cox;

Embedded C Programming and the Atmel

AVR; Cengage Learning, 2006

[6] Christian Diedrich, Francesco Russo, Ludwig
Winkel ,Terry Blevins; Function Geberator

Application in RF System Based on IEC
61804;

[7] Proakis; Digital Signal Processing: Principles
Algorithms and Implementation; Forth Edition

- 2007

Author Profile

Ashish Patel received the B.E. in Electronics

Engineering from The Maharaja Sayajirao

University of Baroda. He is currently working in

the R&D laboratory. His areas of interests are

VLSI, Software Programming and Embedded

Systems.

947

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110410

