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ABSTRACT 

 An array antenna system with innovative signal 

processing can enhance the resolution of a signal 

direction of arrival (DOA) estimation. Super 

resolution algorithms take advantage of smart 

antenna structures to better process the incoming 

signals. Thus, the smart antenna system becomes 

capable to locate and track signals by the both users 

and interferers and dynamically adapts the antenna 

pattern to enhance the reception in Signal-Of-

Interest direction and minimizing interference in 

Signal-Of-Not-Interest direction. They also have the 

ability to identify multiple targets. This paper 

explores the Eigen-analysis category of super 

resolution algorithm. A class of Multiple Signal 

Classification (MUSIC) algorithms known as a 

Smooth-MUSIC algorithm is presented in this 

paper. The Smooth-MUSIC method is based on the 

eigenvectors of the sensor array correlation matrix. 

It obtains the signal estimation by examining the 

peaks in the spectrum.  Statistical analysis of the 

performance of the processing algorithm and 

processing resource requirements are discussed in 

this paper. Extensive computer simulations are used 

to show the performance of the algorithms. The 

resolution of the DOA techniques improves as 

number of array elements increases. 

 

Keywords  --MUSIC, Adaptive Beamforming, 

DOA,  Smooth-MUSIC, Smart antenna. 

 

1. Introduction  
       The high demand on the usage of 

the wireless communication system calls for higher 

system capacities. The system capacity can be 

improved either enlarging its frequency   bandwidth 

or allocating new  portion of frequency  spectrum to  

wireless  services. But since the electromagnetic 

spectrum is a limited resource,  it is not easy  to  get 

new spectrum  allocation without the international 

coordination on the global level[1,7] .  One of the 

approaches is to use existing spectrum more 

efficiently, which is a challenging task.  Efficient 

source and channel coding as well as reduction in 

transmission power or transmission bandwidth or 

both   are possible solutions to the challenging issue. 

With the advances in digital techniques, the 

frequency efficiency can be improved  by multiple 

access technique (MAT), which  gives  mobile users 

access to scarce resource (base  station) and hence 

improves the  system’s  capacity. Family of existing 

Frequency Division Multiple Access  (FDMA),  

Time Division Multiple Access  (TDMA)  and  

Code Division Multiple Access  (CDMA)  can be 

enlarged by adding  a new parameter  ―space‖ or 

―angle‖, which results in MAT known as ―Space 

Division Multiple Access‖ (SDMA)[9,3,5]. At the 

receiver’s side, the transmitted signal is received 

with its multipath components plus interferers 

signal, as well as with present noise. Thus, detection 

of the desired signal is a challenging task.   

    

   The Smart Antenna 

System (SAS) employs the antenna elements and 

the digital signal processing which enables  it  to 

form a beam to  a  desired direction taking into 

account the multipath signal components. This can 

be achieved by the adaptive beamforming technique  

In this way, Signal-to-Interference-and-Noise Ratio 

(SINR) improves by  producing nulls towards the 

interferers Signal-Of–No-Interest (SONI).The 

performance of SAS greatly depends on the 

performance on DOA estimation.  

   

In this paper, we are investigating the 

performance of MUSIC, ROOT-MUSIC and 

Smooth-MUSIC algorithms simulated by using 

MATLAB as a tool. The performance of these 

algorithms is analysed by considering parameters 

like  number  of array elements,  user  space  

distribution, which results in optimum array design 

in SAS. 

 

2. Adaptive beam forming 
 

  As the name indicates, an adaptive beam 

former is able to automatically adapt its response to 

different situations. Some criterion has to be set up 

to allow the adaption to proceed such as minimizing 

the total noise output. Because of the variation of 

noise with frequency, in wide band systems it may 

be desirable to carry out the process in 

the frequency domain. Beam forming can be 

computationally intensive. Sonar phased array has a 

data rate low enough that it can be processed in real-

time in software, which is flexible enough to 

transmit and/or receive in several directions at once. 

In contrast, radar phased array has a data rate so 

high that it usually requires dedicated hardware 

processing, which is hard-wired to transmit and/or 

receive in only one direction at a time. However, 

newer field programmable gate arrays are fast 

enough to handle radar data in real-time, and can be 

quickly re-programmed like software, blurring the 

hardware/software distinction. The above mentioned 
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concept is related to the process of beam forming 

and it doesn’t exploit the possibility to steer the 

nulls of the antenna beam in the direction of the 

RFIs (adaptive beam forming). These evolutions of 

standard beamformers are conceived to separate 

(analogically, digitally or both) a desired signal 

from one or more interfering signals (Spatial 

Filtering) by means of automatic and continuous 

characterization of the components of the weighting 

vector. This can be performed using a wide variety 

of different algorithms designed for many specific 

applications. 

            

3. DOA ESTIMATION 
 

Adaptive signal processing sensor arrays, known 

also as smart antennas, have been widely adopted in 

third-generation (3G) mobile systems because of 

their ability to locate mobile users with the use of 

DOA estimation techniques. Adaptive antenna 

arrays also improve the performance of cellular 

systems by providing robustness against fading 

channels and reduced collateral  interference. The 

goal of direction-of-arrival (DOA) estimation is to 

use the data received on the downlink at the base-

station sensor array to estimate the directions of the 

signals from the desired mobile users as well as the 

directions of interference signals. The results of 

DOA estimation are then used by to adjust the 

weights of the adaptive beamformer so that the 

radiated power is maximized towards the desired 

users, and radiation nulls are placed in the directions 

of interference signals.   Hence, a successful design 

of an adaptive array depends highly on the choice of 

the DOA estimation algorithm which should be 

highly accurate and robust. 

There are three methods to find Direction Of 

Arrival      (DOA) 

       1 .Spectral based method, 

       2. Parametric method, 

       3. Sub space-based method. 
 

3.1 Spectral Based Method: 
The DOA estimation can be done by computing 

spatial spectrum and then determining local  

maximas. 

(i) Conventional 

(ii) Capon’s & Bartlett 

Conventional: 

The conventional beam former is a natural 

extension of classical Fourier-based spectral 

analysis to sensor array data. For an array of 

arbitrary geometry, this algorithm       maximizes the 

power of the beam forming output for a given input 

signal.  

 

Capon’s &Bartlett: 

In this method a rectangular window of uniform 

weighting is applied to the time series data to be 

analyzed. 

 

 

 

 3.2  Parametric Method: 
It requires simultaneous search of all parameters. 

It requires prior information about data to be 

generated. Eliminates need for window functions 

and assumptions. In this section, we review the 

maximum likelihood methodology for the case of 

additive Gaussian noise of zero mean and variance 

matrix.  

The two methods as follows: 

(i)  Deterministic Maximum Likelihood 

       (ii) Stochastic Maximum Likelihood 

 

 Deterministic maximum likelihood: 

According to the Deterministic ML (DML) the 

signals are considered as unknown, deterministic 

quantities that need to be estimated in conjunction 

with the direction of arrival. This is a natural model 

for digital communication applications where the 

signals are far from being normal random variables, 

and where estimation of the signal is of equal 

interest. 

 

 Stochastic maximum likelihood: 

      In general, the SML estimate (SML) cannot be 

found analytically. Hence, numerical procedures 

must be employed  to carry out the required 

optimization. Several optimization methods have 

been proposed in the literature, including the 

Alternating Projection method, several Newton type 

techniques and the Expected Maximization (EM) 

method. The SML likelihood function is regular and 

the SML estimator is consistent and asymptotically 

efficient, i.e., the covariance of the estimates 

asymptotically attains the stochastic Cramer Rao 

Bound. 
 

3.3 Sub Spaced-Based Method: 

In this method the DOA estimation is based on the    

Eigen values and depends upon the steering vectors. 

(i) MUSIC Family algorithms 

(ii) ESPIRIT Algorithm 

In this paper we focussed on MUSIC Family 

algorithms. The MUSIC family consists of  

 MUSIC Algorithm 

 ROOT-MUSIC Algorithm 

 SMOOTH-MUSIC Algorithm  

The mathematical models of MUSIC family as 

follows: 

3.3.1 MUSIC: 

Consider the signal model of M signals incident on 

the array, corrupted by noise, i.e. 

 

Using the above data  

 

                              

] 
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n=noise 

S is a matrix of M steering vectors. Assuming that 

the different signals to be uncorrelated the 

correlation matrix of x can be written as 
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The signal covariance matrix Rs is clearly a N×N 

matrix with rank M. It therefore has N-M Eigen 

vectors corresponding to the Eigen value. Let qm be 

such an Eigen vector. 

             Therefore, 

 

 

 

Where this final equation is valid since the matrix A 

is clearly positive definite. The above equation 

implies that all N-M Eigen vectors (qm) of Rs 

corresponding to the zero Eigen value are 

orthogonal to all M signal steering vectors. 

 This is basic of MUSIC. Call Qn the N× 

(N-M) matrix of these Eigen vectors. MUSIC plots 

the pseudo spectrum. 

 

 

Pmusic    

 Eigen vectors making up Qn are orthogonal 

to the signal steering vectors. The denominator 

becomes zero when Φ is a signal direction. 

Therefore estimated signal directions are the M 

largest peaks in pseudo spectrum. 

Eigen vectors in Qn can be estimated from the 

Eigen vector of R 

For any Eigen vector , 

 

 

 

i.e., any Eigen vector of Rs is also an Eigen vector 

of R with corresponding Eigen value  . 

 

Let   

 

Based on Eigen decomposition we can partition the 

Eigen vector matrix Qs with M columns, 

corresponding to M signal Eigen values, and a 

matrix Qn with (N-M) columns, corresponding the 

noise Eigen values . 

  Note that Qn, N× (N-M) matrix of 

Eigen vectors corresponding to the noise Eigen 

value  is exactly the same as the matrix of 

Eigen vectors of Rs corresponding to the zero Eigen 

value .Qs defines the signal subspace, while Qn 

defines the noise subspace. 

 

 3.3.2 ROOT-MUSIC: 

 In music the accuracy is limited by the 

discretization at which the MUSIC function 

 is evaluated. More importantly, it 

requires either human interaction to decide on the 

largest M peaks or a comprehensive search 

algorithm to determine these peaks. This is an 

extremely computationally intensive process. 

Therefore, MUSIC by itself is not very practical. 

We require a methodology that results directly in 

numeric values for the estimated directions. This is 

where Root-MUSIC comes in. Note that MUSIC is 

a technique that estimates the spectrum of the 

incoming data stream, i.e., it is a spectral estimation 

technique. The end product is a function  

as a function of the DOA, Φ. Root-MUSIC, on the 

other hand, is an example of model-based parameter 

estimation (MBPE) technique. We use a model of 

the received signal as a function of the DOA here; 

the model is the steering vector. The DOA, Φ, is a 

parameter in this model. Based on this model and 

the received data, we will estimate this parameter. A 

crucial aspect of MBPE is that the estimation 

technique is valid only as much as the model itself is 

valid. For example, our steering vector model is not 

valid when we take mutual coupling into account or 

for a circular array. For now we define 

 

Then assuming the receiving antenna is linear array 

of equi spaced, isotropic elements, 
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i.e., inner product of Eigen vector  and steering 

vector S(Φ) is equivalent to a polynomial in Z. 

Since we are looking for the directions (Φ) where 

qm ⊥  S(_Φ), m = (M + 1), . . . ,N, we 

are looking for the roots of a polynomial. 

To find the polynomial whose roots we wish to 

evaluate, we use 

 

 

 

  

                             

The final double summation can be simplified by 

rewriting it as a single sum by setting  

l = n−m. The range on l is set by the limits on n and 

m, i.e. − (N − 1) ≤ l ≤ (N − 1) and 

                             

  

     

i.e.,  is the sum of the elements of C on the  

diagonal. Eqn. (6) defines a polynomial of 

degree  (2N − 2) with (2N − 2) zeros. However, we 

can show that not all zeros are independent. If z is a 

zero of the above polynomial, and of ,  

is also a zero of the polynomial. The zeros of 

 therefore come in pairs. Since z and   

have the same phase and reciprocal magnitude, one 

zero is within the unit circle and the other outside. 

Note that we are using this root to estimate the 

signal angle. From the definition of z, only the 

phase carries the desired information, i.e., both z 

and  carry the same desirable information. Also, 

without noise, the roots would fall on the unit circle. 

MUSIC ALGORITHM: 

1 Consider the input signal as 

 

2 Estimate the correlation matrix R using input 

signal x. Find its Eigen decomposition  

3 Partition Q to obtain Qn, corresponding to the (N 

− M) smallest Eigen values of Q, which spans the 

noise subspace. 

4 Plot, as a function of Φ, the MUSIC function 

 in Eqn.  

 

 

5 The M signal directions are the M largest peaks of  

 

 

3.2.3  ROOT-MUSIC ALGORITHM: 

1 Estimate the correlation matrix R. Find its Eigen 

decomposition 

 

2 Partition Q to obtain Qn, corresponds to the (N 

−M) smallest Eigen values of Q   , which spans the 

noise subspace. 

3 Find  

4 Obtain by summing the diagonal of C. 

5 Find the zeros of the resulting polynomial in terms 

of (N−1) pairs. 

6 Of the (N − 1) roots within the unit circle, choose 

the M closest to the unit circle 

(Zm, m =1, . . . M). 

7 Obtain the directions of arrival using 

, m=1,2,………M 

4 PROPOSED METHOD (SMOOTH- 

MUSIC): 
 

There are several variants of the MUSIC algorithm, 

including Cyclic-MUSIC and Smooth-MUSIC. 

Smooth-MUSIC is interesting because it overcomes 

the MUSIC assumption that all incoming signals are 

uncorrelated (we had set the matrix A to be 

diagonal). In a communication situation, assuming 

flat fading, there may be multipath components 

from many directions. These components would be 

correlated with each other. Correlated components 

reduce the rank of the signal correlation matrix Rs, 

resulting in more than (N −M) noise Eigen values. 

In smooth-MUSIC, the N elements are subdivided 

into L overlapping sub arrays, each with P elements. 

For example, sub array 0 would include elements 0 

through P − 1, sub array 1 elements 1 through P, etc. 

Therefore, L = N − P + 1. Using the data from each 

sub array, L correlation matrices are estimated, each 

of dimension  

P × P. The MUSIC algorithm then continues using a 

smoothed correlation matrix correlation matrix. 

 

This formulation can detect the DOA of up to L − 1 

correlated signals. This is because the signal 

correlation matrix component of  becomes full 

rank again. 
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SMOOTH-MUSIC ALGORITHM: 

1 Divide the array into K overlapping sub arrays. 

2 Estimate the correlation matrix R using input 

signal for each sub array 

  

3 Find its Eigen decomposition  for 

each sub array                             

4  Estimate the number of received signals. 

5 Partition Q to obtain Qn, corresponding to the (N 

− M) smallest Eigen values of Q, which spans the 

noise subspace. 

6 Plot, as a function of Φ, the MUSIC function 

 in Eqn. for each sub array 

 

 

7. The M signal directions are the M largest peaks 

of   

 

5. RESULTS AND DISCUSSION: 
 

 Let us consider 

                   Number of incident signals = 2 

                   Number of elements = 20 

                   Given Angles [-10, 40] 

The figure 1 presents Spectrogram of estimation of 

two signals located at( -10, 40 ), respectively, 

receiving at the uniform linear array. The Direction 

of Arrival is estimated by MUSIC method using 100 

snapshots. The figure shows two peaks coinciding 

with the real DOA with a high precision, which 

proves the validity of the system. 

 

 

Figure1: Music spectrum 

The  figure 2 represents the roots of the polynomial 

equation which are lying  in the  Z-Plane. Among 

them, two roots are lying on the unit circle which 

represents the incident signals at the uniform linear 

array. By using these two roots we can able to find 

the direction of arrival estimation. The simulation 

results of the root-MUSIC algorithm clearly 

demonstrate the ability to resolve multiple targets 

with separation angles smaller then the main lobe 

beam width of the array thus proving its super-

resolution capabilities. 

 

Figure2: Roots in Z-plane(ROOT-MUSIC) 

Consider    

                 Number of incident signals = 2 

                 Number of elements = 20 

                 Length of the sub-array = 7 

                 Number of sub-arrays =7 

 
Figure3: Smooth-MUSIC spectrum 

The figure 3 presents Spectrogram of estimation of 

two signals located at ( -10, 40 ), respectively, 

receiving at the uniform linear array. The Direction 

of Arrival is estimated by SMOOTH-MUSIC 

method using 100 snapshots. The figure shows two 

peaks coinciding with the real DOA with a high 

precision, which proves the validity of the proposed 

system. 

5.1 Comparision: 

 

Figure 4: Spectrum for MUSIC, ROOT-MUSIC 

AND SMOOTH-MUSIC 

The figure 4 shows that the simulation results for 

the MUSIC,ROOT-MUSIC, SMOOTH-MUSIC. 

5.2 Performance Analysis: 
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(a) smooth-music spectum for 20 array elements (b) smooth-music spectum for 40 array elements
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Figure 5:Music for varying number of array 

elements 

The  figure 5 indicates that as array size increases 

from 20 to 80 elements, peaks in the spectrum 

become sharper and hence resolution capability of 

MUSIC increases 
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Figure 6:Root-MUSIC for varying number of 

array elements 

The  figure 6 indicates that as array size increases 

from 20 to 80 elements, the roots in the Z-plane are 

becoming closer to the Unit Circle and hence 

resolution capability of Root-MUSIC increases. 
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Figure 7:Smooth-MUSIC for varying number of 

elements 

The  figure 7 indicates that as array size increases 

from 20 to 80 elements, peaks in the spectrum 

become sharper and hence resolution capability of 

Smooth-MUSIC increases. 

 

6. CONCLUSION: 
 

 When we seen the  results,  as  the number 

of  elements in the array increases, then  the peaks in 

the spectrum become sharper and the resolution 

capability of the MUSIC, ROOT-MUSIC and 

SMOOTH MUSIC increases. And, the peaks in the 

spectrum is more sharper for Smooth-MUSIC when 

compared to the MUSIC. So, the resolution 

capability for the Smooth-MUSIC is high when 

compared to the MUSIC and Root-MUSIC in DOA 

estimation. 
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