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Abstract-- In this paper, we investigate the problem of designing 

a Neural Network (NN) observer for the Euler discretized model 

of Twin Rotor Multi-Input-Multi-Output (MIMO) system which 

belongs to a class of nonlinear system.  The observer is based on 

a Chebyshev Neural Network (CNN), trained by using Extended 

Kalman Filter (EKF) learning algorithm. The state estimation 

error and output error are guaranteed to be semiglobally 

uniformly ultimately bounded (SGUUB) and neural network 

weights to be bounded. Simulation results are also included to 

illustrate the applicability of the proposed observer. 

Keywords-- Chebyshev Neural Network, Discrete–Time 

Nonlinear System, Extended Kalman Filtering, Neural Observer, 

Twin Rotor MIMO System. 

I.  INTRODUCTION  

During the past four decades, nonlinear state estimation 
has been a very important topic for nonlinear control. The 
concept of an observer for a dynamic process was introduced 
by D. Luenberger [1]. The generic Luenberger Observer, 
however, appeared several years after the Kalman Filter [2], 
which infact an important case of a Luenberger Observer – an 
observer optimized for the noise present in the observation 
and in the input to the process. Furthermore, state estimation 
has been studied by many authors, who have obtained 
interesting results in different directions [3]-[6]. Most of the 
approaches need the previous knowledge of the plant 
dynamics. Recently, neural observers [7]-[8] has emerged for 
unknown plant dynamics. Now a days neural networks are 
very important methodology for solving some very difficult 
problems in engineering, as exemplified by their applications 
in control nonlinear and complex systems. 

In this paper, we develop a Luenberger - like observer for 
the Euler discretized model of Twin Rotor Multi-Input-Multi-
Output (MIMO) system (TRMS) [9] which belongs to a class 
of nonlinear system. The observer is based on a Chebyshev 
Neural Network (CNN) [10]-[12], which estimates the state 
vector of the unknown plant dynamics. In CNN, for functional 
expansion of the input pattern, we have chosen   the   
Chebyshev polynomials and the network is also named as 
Chebyshev-Functional Link Artificial Neural Network 
(CFLANN) [12].  The learning algorithm for the CNN is 
based on an extended Kalman filter (EKF) [7]-[8], [13], [18]. 
With the EKF based algorithm, the learning convergence is 
improved as compared to other previously used algorithms 
[13]. The state estimation error and output error are 
guaranteed to be semiglobally uniformly ultimately bounded 
(SGUUB) and neural network weights to be bounded [7]. 

This paper presents the following main contributions: In 
Section II the TRMS system is introduced and its discrete 
model is obtained. In Section III, CNN structure is given. The 
EKF training algorithm is given in Section IV. The proposed 
CNN observer is introduced in Section V. The observer 
performance is demonstrated in Section VI by providing 
simulation results. Finally concluding remarks are made in the 
last section.   

II. 2-DOF TRMS MODEL 

 
The mechanical setup of the twin rotor MIMO system is 

shown in Fig.1.  
 

A. Continuous-Time Model 

The complete dynamics of the TRMS can be 

approximately represented in the state space form as follows 

[9] 
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The output is given by 

                                                                    (2)
T

y   

where 
ψ : Pitch (Elevation) Angle, 
ϕ : Yaw (Azimuth) Angle,  
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τ1 : Momentum of Main Rotor, 
τ2 : Momentum of Tail Rotor, 
u1 and u2 : Inputs, 

and, the system parameters of the TRMS are given in   Table 
I. 

TABLE I.  TRMS PARAMETERS 

Parameters Values 

I1 – Moment of Inertia of Vertical Rotor 6.8x10-2 kg-m2 

I2
 – Moment of Inertia of Horizontal Rotor 2x10-2  kg-m2 

a1 – Static Characteristic Parameter 0.0135 

b1 – Static Characteristic Parameter 0.0924 

a2 – Static Characteristic Parameter 0.02 

b2 – Static Characteristic Parameter 0.09 

Mg – Gravity Momentum 0.32 N-m 

B1ψ – Friction Momentum Function Parameter 6x10-3   N-m-s/rad 

B1ϕ – Friction Momentum Function Parameter 1x10-1 N-m-s/rad 

Kgy – Gyroscopic Momentum Parameter 0.05 s/rad 

k1 – Motor 1 Gain 1.1 

k2 – Motor 2 Gain 0.8 

T11 – Motor 1 Denominator Parameter 1.1 

T10 – Motor 1 Denominator Parameter 1 

T21 – Motor 2 Denominator Parameter 1 

T20 – Motor 2 Denominator Parameter 1 

Tp – Cross Section Momentum Parameter 2 

T0 – Cross Section Momentum Parameter 3.5 

kc – Cross Reaction Momentum Gain  -0.2 

 
 

 
Figure 1.  The Twin Rotor MIMO System (TRMS).  

Consider the state space form 

( )
                                                        (3)

x Ax f x Bu
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where  x ∈ ℜ𝑛,  u ∈ ℜ𝑚,  y ∈ ℜ𝑃,  A ∈ ℜ𝑛x𝑛, B ∈ ℜ𝑛x𝑚, C ∈
ℜ𝑝x𝑛  and p ≥ m. The function f (x) can be constructed as 
uncertainties or nonlinearities in plant.  

 

For the state space representation of TRMS by (3) 
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where  

 
1 2

(6x1)

T
x       

 
For  existence  purpose,   one  requires  that    f (x)  be 

continuous in  x. 

B. Discrete-Time Model 

The discrete-time model of TRMS, obtained using Euler 
forward discretization method, is given by 
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where 
k : Sampling Step, 
𝑥(𝑘) ≜ 𝑥[(𝑘𝑇𝑠)] , 
𝑥(𝑘 + 1) ≜ 𝑥[(𝑘 + 1)𝑇𝑠] , 
𝑢(𝑘) ≜ 𝑢[(𝑘𝑇𝑠)] , 
F= 𝐼6 + 𝐴𝑇𝑠 , 
G= 𝐵𝑇𝑠 , 

     
( ( ))g x k = 𝑓(𝑥)𝑇𝑠 , 

Ts : Sampling Time, 
and, I6 is a 6x6 identity matrix.     

III. CNN STRUCTURE 

Consider a discrete-time MIMO nonlinear system 

                                      
( 1) ( ) ( ( )) ( )

(5)
( ) ( )   
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where  𝑥(𝑘) ∈ ℜ𝑛 , 𝑢(𝑘) ∈ ℜ𝑚 , 𝑦(𝑘) ∈ ℜ𝑃 , F∈ ℜ𝑛x𝑛 , G  ∈
ℜ𝑛x𝑚, C ∈ ℜ𝑝x𝑛  and p ≥ m. The function ( ( ))g x k ∈ ℜ𝑛 is a 

nonlinear function, which is unknown with entries (.)ig   

(i=1, …, n). 
Here, a single layer CNN is used to approximate the 

unknown nonlinear function. The output of the CNN is given 
by [14] 

ˆ ˆ ˆ( ( )) ( ( ))      ( 1,......., )                          (6)
T

i ig x k w x k i n  
 

where ˆ ˆ( ( ))ig x k is the output of ith neuron, n is the output 

dimension, wi  is the respective online adapted weight vector, 
given by  

 1 2
   ............i i i iLi

w w w w  

where iL is the respective number of higher order 

connections, and ˆ( ( ))x k is the basis function which is 

formed using Chebyshev polynomials. 

The Chebyshev polynomials can be generated by the 
following recursive formula  

01 1
( ) 2 ( ) ( ),            ( ) 1r r rT x xT x T x T x     

where ( )rT x is a Chebyshev polynomial, r is the order of 

polynomials chosen and x is a scalar quantity. 

The following theorem states the function approximation 
capability of CNN 

Theorem 1: Assume a feed forward MLP neural network 
with only one hidden layer and linear activation functions of 
the output layer. If all the activation functions of the hidden 
layer satisfy the Riemann integrable condition, then the feed 
forward neural network can always be represented as a 
Chebyshev neural network. [11] 

The CNN structure is shown in Fig. 2. The basis function 
is given as 

 
1 2

ˆ ˆ ˆ ˆ( ( )) 1 ( ( )) ( ( ))    ............. ( ( ))r r r nx k T x k T x k T x k   

In this paper, the order of r is taken as 2. 
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Figure 2.  CNN Structure.  

A smooth nonlinear function ( ( ))g x k can be 

approximated by CNN [14] 
*

 ( ( )) ( ( ))                                                (7) 
T

i i ig x k w x k     

where ( ( ))ig x k  is the nonlinear function in ith plant state,  i

is the bounded approximation error [14]. 

Assume that there exists an ideal weight vector 
*

iw such 

that   i  can be minimized on a compact set i  ℜ𝐿𝑖. The 

weight estimation error is defined as 
*

( ) ( )                                                             (8)i i iw k w w k 

where 
*

iw  is the ideal weight vector and iw its estimate. Since 

*

iw  is constant, one has 

( 1) ( ) ( ) ( 1)    i i i iw k w k w k w k      

IV. EKF TRAINING ALGORITHM  

In this paper we use the following modified EKF based 
training algorithm, for designing the CNN observer [7]-[8], 
[13], [18] 
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where 𝑒(𝑘) ∈ ℜ𝑝 is the output error and 𝑃𝑖(𝑘) ∈ ℜ𝐿𝑖x𝐿𝑖 is the 
weight estimation error covariance matrix at step k, 𝑤𝑖(𝑘) ∈
ℜ𝐿𝑖  is the weight state vector, 𝑦(𝑘) ∈ ℜ𝑝 is the plant output, 
𝑦̂(𝑘) ∈ ℜ𝑝 is the neural observer output, n is the number of 
plant states, 𝐾𝑖(𝑘) ∈ ℜ𝐿𝑖x𝑝 is the Kalman gain matrix, Qi(k) ∈
ℜ𝐿𝑖x𝐿𝑖  is the NN weight estimation noise covariance matrix, 
𝑅𝑖(𝑘) ∈ ℜ𝑝x𝑝  is the error noise covariance matrix and 

𝐻𝑖(𝑘) ∈ ℜ𝐿𝑖x𝑝  is a matrix, in which each entry Hij is the 
derivative of the ith neural output with respect to ijth neural 
network weight given as follows 

ˆ( )
( ) (14)

( )
                                              

T

ij

ij

y k
H k

w k






 
 
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where  j=1,………., Li and i=1,………., n. The ijth NN weight 

is selected according to the output ˆ( ) y k . If ˆ ˆ( ) ( )ny k x k , 

then Hij is given as 
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where wnj is the njth NN weight. 

Pi(k), Qi(k) and Ri(k) matrices are initialized as diagonal 

matrices with entries Pi(0), Qi(0) and Ri(0) respectively. It is 

to be noted that Pi(k), Qi(k) and Ri(k) for EKF are bounded 
[15]. 

V. NEURAL OBSERVER DESIGN USING CNN 

Consider an observable discrete-time system given by (5). 
Equation (5) can be be rewritten as 

1
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For the system (15) the proposed CNN observer, shown in 
Fig. 3, is given as 

1
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where  Di ∈ ℜ1x𝑝, Fi ∈ ℜ1x𝑛 and  Gi ∈ ℜ1x𝑚. 
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Figure 3.  CNN Observer Scheme.  

The observer gain matrix D ∈ ℜ𝑛x𝑝  is chosen such that   
F-DC is convergent. (Note that a matrix P is called 
convergent if all the eigen values of P lie inside the open unit 
circle in complex plane.). The weight vectors are updated 
online with a modified EKF algorithm (9)-(14). The output 
error is defined by  

ˆ( ) ( ) ( )                                                           (17)e k y k y k   

and the state estimation error as 

ˆ( ) ( ) ( )                                                         (18)x k x k x k         

The dynamics of (18) can be given as 

*

*

*

( 1) ( ) ( ( )) ( )                             (19)
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i i i i

i i i

i i i

i i i
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J F D C
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  

 

      

where 
*

i  is a bounded error term [16]. 

The dynamics of (8) is given by 

( 1) ( ) ( ) ( )                                         (20)i i iw k w k K k e k         

The main result is establish as the following theorem 
Theorem 2: For system (15), the nonlinear observer (16) 

trained with the EKF-based algorithm (9)-(14), ensures that 
the output error (17) and the estimation error (18) are semi-
globally uniformly ultimately bounded (SGUUB). [7] 

Proof: Refer to [7]. 

VI. SIMULATION RESULTS 

A detailed simulation study of the proposed observer is 
carried out with the inputs as 

1 2
( ) ( ) 0.2sin(0.5 ) 0.3sin(0.6 )s su k u k kT kT   . The 

sampling time Ts is .001s. All initial values of states are set to 
zero. All the NN weights are initialized as zero. The 
covariance matrices are initialized as diagonals and the non-

zero elements are Pi(0)=100, Qi(0)=.000001 and Ri(0)=100 
respectively (i=1,……,n). 

The simulation results are shown in Fig. 4 and Fig. 5. Fig. 
4 shows the actual states and observed states respectively. 
Fig. 5 shows the state estimation errors. 

 

 
 

 

Figure 4.  Actual and Observed States of TRMS with CNN Observer. 
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Figure 5.  State Estimation Errors in TRMS with CNN Observer. 

In the neural observer the unknown nonlinearities are 
estimated using CNN. It can be seen from Fig. 4 that the 
response of the observer is good using neural network. Fig. 5 
shows that the observer error of TRMS with CNN observer is 
very small and bounded. 

VII. CONCLUSIONS 

A neural observer for Euler discretized model of 2-DOF 
Twin Rotor MIMO System (TRMS) is presented. A CNN is 
used to design a Luenberger-like observer for a class of 
MIMO discrete-time nonlinear system. The CNN Observer 
proposed is trained with an EKF based algorithm. With the 
EKF based algorithm, the learning convergence is improved  
as compared to other previously used algorithms. Simulation 
results show the effectiveness of the proposed CNN 
Observer. 
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