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Abstract— This paper proposes a fault detection method based 

on an entropy calculation technique from the experimental 

output at the receiving and sending end of the transmission line 

network. Transmission lines are the most vital network systems 

meant for transmitting power from one corner of a place to the 

farthest most in the other direction. Fault diagnosis is a 

pervasive part of power system operation. Fault diagnostic 

assists in identifying the various power system apparatus 

defects. We have developed a software simulation model of a 

power system transmission line for the detection of faults by 

computing the entropy from the transmission line network 

variables. The hypothetical model is simulated in MATLAB. 

Fault is introduced in the system and the entropy called 

Lyapunov Exponent is computed from the time series 

generated values of voltage and current at the sending and 

receiving end terminal of the transmission line. The value of 

the Lyapunov Exponent of a faulty line is matched with the 

value of the Lyapunov Exponent computed during normal 

conditions, It has been observed that the value of entropy 

changes abruptly during fault. These observations are really 

helpful for the diagnosis of abnormal conditions in 

transmission lines for the safe and reliable operation of power 

system networks.     

Keywords—Transmission Lines, Faults, Lyapunov Exponent, 

Rosenstein Algorithm, Entropy curve

I. INTRODUCTION 

The transmission line network is an important part of the 

power system and hence it is essential to identify faults in 

the transmission line for safe and reliable operation of the 

transmission line network. In this work, we have taken the 

help of an entropy called Lyapunov Exponent (LE) to detect 

abnormal conditions in the transmission line. A hypothetical 

model of a transmission line network has been developed in 

the MATLAB-based Simulink platform and is simulated for  

different types of symmetrical and unsymmetrical faults. 

Faults that occur under the category of unsymmetrical fault 

are line to ground(LG), double line to ground(LLG), and 

line to line (LL), while three-phase short circuit fault(LLL) 

and three-phase to ground fault(LLLG) are categorized as a 

symmetrical fault. LE is calculated from sending and 

receiving end data generated at the scope both for abnormal 

and normal conditions. The value of LE of a faulty line is 

matched with the value of LE computed for the healthy line. 

A difference is observed in the value of LE, which indicates 

the presence of anomalous conditions in the system.  

The usual method for calculating LE is to use systemic 

equations. When we are unaware of the mathematical 

definition of any nonlinear system LE is calculated from the 

time series generated at the output of the system [1][2][3]. 

Out of the various algorithms available for the computation 

of LE from time series or experimental data, in this work, 

the Rosenstein algorithm has been chosen for the robustness 

of the algorithm. Rosenstein algorithm can efficiently 

calculate LE from a small data array generated at the output 

of the transmission network system. With the help of this 

algorithm, we were able to calculate the value of LE 

precisely. The method is consistent in a noisy environment 

also. To compute the LE from experimental data in this 

research, we successfully used the Rosenstein algorithm. 

II. LITERATURE REVIEW

The referred paper [4] describes a methodology that 

employs a numerical computing environment in the 

MATLAB platform to actively simulate the transmission 

line performance for the short, medium, and long 

transmission line instances. To calculate line performance 
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metrics like power factor, transmission line efficiency, and 

voltage regulation, among others, a program is developed 

taking into account the unique ABCD constants of the 

various length transmission lines. The Author has also 

measured the receiving end voltage, receiving end power, 

voltage regulation, and transmission efficiency for the 

transmission line of different lengths. At last, the author has 

concluded that as the line length increases transmission 

efficiency falls significantly because the transmission line 

loss increases. 

 In [5] the authors have addressed the most significant 

issue i.e. using the Lyapunov exponent and Lyapunov 

dimension, one may determine if a power system is 

experiencing chaotic motion or not. For specific 

nonlinearities, parameter ranges, and external forces, 

chaotic dynamics are present by default, and they would 

need to be managed to enhance the performance of the 

power system. To quell chaos, the state feedback control 

mechanism is used in this paper. Overall, it was discovered 

that the state feedback control methodology, when 

compared to other chaos control methods, is 

straightforward enough to be applied to chaotic 

suppression.  

In paper [6], a three-segment piecewise linear resistor 

and a DC bias voltage source connected in series with a 

load resistor at one terminal each make up a generic 

lossless transmission circuit. The circuit behavior is then 

described by a one-dimensional map that is created. This 

paper concludes by discussing the formal chaos 

mathematical definition and the necessary conditions for its 

existence based on a chaotic one-dimensional map of the 

system. 

This paper [7] narrates about different types of faults on 

three-phase transmission lines, Both symmetrical and 

unsymmetrical faults have been considered, the faults might 

be L-G (line to ground), L-L (line to line), L-L-G (double 

line to ground) etc. The research in this study concentrated 

on the causes and effects of faults in the overhead 

transmission lines. There are various reasons why problems 

occur, including lighting, wind damage, trees cutting 

through gearbox lines, cars or planes crashing into gearbox 

towers or poles, birds shorting wires, or vandalism. The 

author has computed the values of the output voltages, 

MVA ratings, and the per-unit reactance of the transmission 

line before and after the fault. As per the result, a 

significant amount of changes were obtained in the values 

of parameters after the occurrence of faults.  

The Maximum Lyapunov Exponent (MLE) is used in 

the paper [8] to evaluate the post-fault transient stability of 

the power system. The phase angles that the phase 

measuring units (PMUs) report are utilized to calculate the 

system's MLE. The author has estimated the Maximum 

Lyapunov Exponent (MLE) for detection of the transient 

instability. The phase angle of the system buses is assumed 

to be measured by the PMUs once the fault is resolved, and 

the MLE is calculated from that measurement. The sign and 

magnitude of the MLE are used to calculate the transient 

stability of the system.  

III. ROSENSTEIN ALGORITHM FOR COMPUTATION OF LE

When the dynamical system's descriptive equations are 

accessible, by resolving the system equations, the whole 

Lyapunov spectrum may be calculated with ease [9][10]. 

This strategy is not appropriate when system's equations are 

not defined. The sole remaining alternative is to determine 

the Maximum Lyapunov Exponent (MLE) using the time 

series data received at the system's output [11][12]. The 

process is directly related to the LLE technique. There are 

some algorithms available for computing LLE using time 

series generated by dynamical systems, like Wolf's 

Algorithm, the Grassberger-Procaccia Algorithm, the 

Rosenstein Algorithm, the Sato’s Algorithm, etc. The 

Rosenstein Algorithm is one of the most trustworthy 

techniques for determining LLE from limited sets of data as 

the algorithm is robust to the changes in algorithm 

parameters. 

Most of the time, experimental time series data are 

obtained from a single variable of a system. Rosenstein’s 

Algorithm starts with the attractor reconstruction dynamics 

from single-dimensional experimental data using the 

method of delay. The success of the said process depends 

on the proper selection of the algorithm parameters such as 

embedding dimension, mean period, and time delay. The 

techniques for estimation of the above parameters are 

described below. 

The time-delay embedding procedure of attractor 

reconstruction is found in mathematical topology related to 

Takens’ theorem. Using Takens’ theorem one can obtain a 

structure that is topologically equivalent to the said attractor 

using a delay embedding technique. This theorem gives us 

the guideline regarding the estimation of embedding 

dimension. The reconstructed attractor is not identical to the 

real-world attractor, rather it has the same dynamical 

properties as that of the actual system. The topological 

structure of the attractor is preserved by the reconstruction. 

The other significant parameter is delay and it is equal to 

the lag where the autocorrelation function of the time series 

drops to 1
1

e
 of its initial value. This is the most common

approach to find delay. Another option is to estimate the 

delay from the first minimum of the mutual information 

function. The mean period is estimated as the reciprocal of 

the mean frequency of the power spectrum of the time 

series. 

   After rebuilding the attractor dynamics, the algorithm 

traces the adjacent neighbor of each point on the trajectory. 

The Largest Lyapunov Exponent (LLE) is then assessed as 

the mean rate of separation of the nearest neighbors as the 

system dynamics change with time. A curve is generated by 

plotting the average separation concerning the number of 

iterations. Then LLE is easily and precisely computed using 

a curve fitting technique i.e. the slope in the linear region of 

the curve gives the value of LE [13]. The steps for 

Rosenstein Algorithm are explained in the flowchart as 

given in Fig-1. 
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Fig.1. Flow Chart of Rosenstein Algorithm [2] 

IV. SIMULATION OF TRANSMISSION LINE IN SIMULINK

A transmission line network is simulated in MATLAB-

based Simulink software as shown in Figure 2. The sending 

and receiving end voltages are at the level of 11 and 0.4 kV. 

After introducing various symmetrical and asymmetrical 

faults, values of faulty voltages and currents are captured 

from the scope connected at the sending and receiving end 

side of the transmission line network. In the software 

simulation model, we have introduced broadly two types of 

faults i.e. symmetrical and unsymmetrical faults. We have 

simulated the model in healthy as well as in faulty 

conditions. For both cases, data has been captured from 

scopes of sending and receiving end sides. A program is 

developed in MATLAB as per the concept of flow chart as 

shown in figure-1 for computing LE from time series data 

for voltage and current both at normal and faulty 

conditions. A drastic change is observed in the two values 

of LE i.e. both for normal and faulty conditions which 

ultimately indicate the presence of anomalies in the 

transmission line. Actions are taken consequently. 

Fig. 2. Simulink Model 

V. SCOPE OUTPUT WAVEFORMS

Though different types of faults are simulated in the 

transmission line model, the output for a few of them is 

attached below. The nature of the fault is also mentioned 

along with the figure captions. Scope data are captured and 

exported to mfile written in MATLAB for computing LE 

using Rosenstein Algorithm from time series. The 

methodology is explained through a flowchart in section III. 

The Y-axis of the upper plot of each figure represents 

voltage (V) and the same for the lower plot represents 

current (mA). The X-axis reflects the time for both plots. 

Fig. 3. Scope output for Voltage and Current  at 11 KV side before the 

Occurrence of Fault 

Fig. 4. Scope output for Voltage and Current  at 0.4 KV side before the 
Occurrence of Fault 
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Fig. 5. Scope output for Voltage and Current at 11 KV side after the 

Occurrence of Unsymmetrical Fault (LG). 

Fig. 6. Scope output for Voltage and Current at 0.4 KV side after the 

Occurrence of Unsymmetrical Fault (LG). 

Fig. 7. Scope output for Voltage and Current at 11 KV side after 
Occurrence of Unsymmetrical Fault (LL) 

Fig. 8. Scope output for Voltage and Current at 0.4 KV side after the 

Occurrence of Unsymmetrical Fault (LL) 

VI. SIMULATION RESULTS AND DISCUSSIONS

The entropy curves generated before the occurrence of a 

fault and as well as after the occurrence of a fault are 

attached below. Numerical Experiments are conducted for 

various types of faults. Some of them are shown below.  

Values of LE are also mentioned along with the entropy 

curves. Entropy curves before and after the occurrence of 

fault are shown in the following figures (Fig-9 to 14). The 

variable along the x-axis represents the number of iterations 

and the variable along the y-axis represents the average rate 

of separation of the nearest neighbor of the reconstructed 

system. Curves are generated from the experimental data 

captured from the scope in the Simulink platform. The value 

of LE is calculated from the slope in the linear region of the 

curve. 

 The given figures depict the changes in the values of LE 

during the fault concerning normal conditions. It is evident 

from the figures that the stiffness of the slope of entropy 

curves in the linear region increases after the system is 

disturbed by faults. This means the positivity of LE 

increases leading the system toward instability. Appropriate 

steps must be taken immediately to prevent further damage 

to the system.  

Fig. 9. Entropy Curve generated at 11 KV side for Healthy Condition 
(LE=0.1) 

Fig. 10. Entropy Curve generated at 0.4 KV side for Healthy 

Condition (LE=0.05) 
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Fig. 11. Entropy Curve generated at 11 KV after Single Phase to 
 Ground (Phase A to ground) fault (LE=0.25) 

Fig. 12. Entropy Curve generated at 0.4 KV after Single Phase to 

Ground Fault (Phase A to ground) (LE=0.125) 

Fig. 13. Entropy Curve generated at 11 KV after LL fault (Phase A to B 

short-circuited) (LE=0.2) 

Fig. 14. Entropy Curve generated at 0.4 KV side after LL fault (Phase A to B 

short-circuited) (LE=0.112)  

VII. CONCLUSION AND FUTURE SCOPE

Fault detection and analysis is a common practice in 

power system operations. Diagnosis of fault is essential in 

revealing the various failures of power system apparatus 

[14][15][16]. In our work, we have shown that it is possible 

to detect the presence of faults or disturbances in the 

transmission line just by computing the values of LE of the 

system both for healthy and abnormal conditions. So 

continuous monitoring of the system will help us to take 

immediate action for clearing faults from the system. It will 

ultimately help to avoid an unnecessary shutdown of the 

power system. Here in this work Rosenstein Algorithm is 

used to calculate the LE from experimental data. In future 

some other popular algorithm like Wolf Algorithm may be 

explored. A comparative study may be done based on these 

two algorithms.  
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