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Abstract: In this paper, we applied the method of Double Laplace Transform for solving 

the Partial Differential Equations, that is, one dimensional Wave & Heat equation. 

Through this methodology we tried to prove that this method is very effective & 

convenient for solving Partial Differential Equation. The scheme is tested through some 

examples & the results demonstrate reliability. 
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1. Introduction 

Integral Transform [1, 2] is one of the most known methods to solve partial differential 

equations. The Wave equation & Heat equation as the fundamental equations in 

mathematical Physics & occur in many branches of Physics, in Applied mathematics as 

well as in Engineering. Eltayeb and Kilicman [3] have applied the double Laplace 

transform to solve general linear telegraph and partial integro-differential equations. 

In 2011 [4], Aghilli & Moghaddam proved certain Theorems on Two Dimensional 

Laplace Transform & applied on Non-Homogeneous parabolic Partial differential 

equations. 

Recently in 2013 [5], R. R. Dhunde has discussed & proved different properties of 

Double Laplace Transform. 

 In this study, we use the Double Laplace Transform to solve a first & second order 

Partial Differential equation, specially one dimensional Wave & Heat equation. Through 
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this method the Partial Differential equation is solved without converting it into Ordinary 

Differential equation, therefore no need to find complete solution of Ordinary Differential 

equation. This is the biggest advantage of this method. Therefore Double Laplace 

Transform technique is very convenient & effective. 

The scheme is tested through three different examples which are being referred from  

[6, 7]. 

Definition of double Laplace transform: 

First of all, we recall the following definitions given by Estrin & Higgins [2].  

Let f(x, t) be a function of two variables x and t, where x, t > 0. The double Laplace 

transform of f(x, t) is defined as 

  






00

),(),(),( dtdxtxfeespftxfLL xpts

xt
                               (1) 

whenever the improper integral converges. Here p, s are complex numbers. 

Existence of double Laplace transforms: 

Let f(x, t) be a continuous function on the interval [0, ∞) which is of exponential order, 

that is, for some a, b𝜖 𝑅.  

Consider     Sup𝑥>0,𝑡>0
 𝑓(𝑥 ,𝑡) 

𝑒𝑎𝑥 +𝑏𝑡
< ∞ 

In this case, the double Laplace transform of  f(x, t) that is 
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),(),(),( dtdxtxfeespftxfLL xpts

xt
 

exists for all 𝑝 > 𝑎 & 𝑠 > 𝑏 &  is in fact infinitely differentiable with respect to 𝑝 >

𝑎 & 𝑠 > 𝑏. 

All functions in this study are assumed to be of exponential order. 
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2. Double Laplace Transforms of Partial Derivatives: 

Double Laplace Transform for first partial derivatives with respect to x is defined as 

follows: 

    L t L x  𝑓𝑥(𝑥,   𝑡)      = p 𝑓  (p, s)− 𝑓  (0, s)                                    (2)                                                                                                                   

Similarly, Double Laplace Transform for first partial derivatives with respect to t is given 

by 

           L t L x  𝑓𝑡(𝑥,   𝑡)  = s 𝑓  (p, s)− 𝑓  (p, 0)                                        (3)                                                                     

Double Laplace Transform for second partial derivatives with respect to x is defined by 

L t L x  𝑓𝑥𝑥 (𝑥,   𝑡)  = = 𝑝2𝑓   p, s − 𝑝 𝑓   0, s − 𝑓 𝑥 0, 𝑠                  (4) 

In a similar manner, Double Laplace Transform for second partial derivatives with 

respect to t can be deduced from a single Laplace Transform 

L t L x  𝑓𝑡𝑡(𝑥,   𝑡) =  𝑠2𝑓   p, s − 𝑠 𝑓   p, 0 − 𝑓 𝑡 𝑝, 0                    (5) 

                                        

3. Applications of Double Laplace Transform: 

3.1 Double Laplace Transform & First order Partial Differential Equation 

Example: Find the bounded solution of ux = 2ut + u, u(x, o) = 𝑒−3𝑥  for x> 0, t > 0. 

Solution: Taking the Double Laplace Transform, we obtain 

                  L t L x  𝑢𝑥  = L t L x  2𝑢𝑡  +  𝑢  

⟹ p 𝑢 (p, s) − 𝑢  0, 𝑠  = 2  𝑠 𝑢  p, s −  𝑢  p, 0  +  𝑢 (p, s) 

⟹ (p − 2s – 1)  𝑢 (p, s) = 𝑢  0, 𝑠  − 2 𝑢 (p, 0)  

But u(x, 0) = 𝑒−3𝑥  ⟹  𝑢 (p, 0) = 
1

𝑝+3
 

⟹ 𝑢 (p, s) = 
1

(p − 2s – 1)  
𝑢  0, 𝑠  − 

2 

 p − 2s – 1 (p+3)  
 

⟹ 𝑢 (p, s) = 
1

(p − 2s – 1)  
𝑢  0, 𝑠  − 

1

𝑠+2
  

1

𝑝−2𝑠−1
−  

1

𝑝+3
  

Using  Lx
-1

 , we get 
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⟹ 𝑢 (x, s) = 𝑒 2𝑠+1 𝑥   𝑢  0, 𝑠  − 
1

𝑠+2
  𝑒 2𝑠+1 𝑥  + 

1

𝑠+2
  𝑒−3𝑥  

⟹ 𝑢 (x, s) = 𝑒 2𝑠+1 𝑥  𝑢  0, 𝑠  −  
1

𝑠+2
     + 

1

𝑠+2
  𝑒−3𝑥                                                 (6)                                                                                                                       

Now u(x, t) is bounded as x →  ∞ & hence 𝑢 (x, s) is bounded as x →  ∞. 

Hence from (6), 𝑢  0, 𝑠  −  
1

𝑠+2
= 0  

⟹ 𝑢  0, 𝑠 =  
1

𝑠+2
 

Therefore, 𝑢 (x, s) =  
1

𝑠+2
  𝑒−3𝑥  

By Inverse Laplace Transform, we get bounded solution 

u(x, t) =    𝑒−3𝑥  𝑒−2𝑡 . 

3.2 Double Laplace Transform & One Dimensional Heat Equation 

Example: Solve  𝑢𝑡  = k  𝑢𝑥𝑥  , u(x, 0) = sin𝜋𝑥 , u(0, t) = 0 , u(1, t) = 0, 0< 𝑥 < 1, 𝑡 > 0. 

Solution:  L t L x  𝑢𝑡  = k L t L x  𝑢𝑥𝑥   

⟹ s 𝑢 (p, s) − 𝑢  𝑝, 0  = k  𝑝2𝑢  p, s − p 𝑢  0, s −  𝑢 𝑥(0, s)  

But u(0, t) = 0 ⟹ 𝑢  0, s = 0 & u(x, 0) = sin𝜋𝑥 ⟹ 𝑢  p, 0 =
π

p2+π2
  

⟹ s 𝑢 (p, s) −   
π

p2+π2
 = k  𝑝2𝑢  p, s −  𝑢 𝑥(0, s)  

⟹ (k 𝑝2 – s) 𝑢 (p, s) =  𝑘𝑢 𝑥 0, s  −   
π

p2+π2
 

⟹ 𝑢 (p, s) = 
𝑘

(k 𝑝2  – s)
 𝑢 𝑥 0, s  −   

π

 k 𝑝2  – s  p2+π2 
  

                   = 
1

( 𝑝2  – 
s

k
)
 𝑢 𝑥 0, s  −   

π

k  𝑝2  –
 s

k
  p2+π2 

 

                   = 
1

( 𝑝2  – 
s

k
)
 𝑢 𝑥 0, s  −   

π

k 
s

k
 + π2   

  
1

  𝑝2  –
 s

k
 
−  

1

 p2+π2 
  

                   = 
1

( 𝑝2  – 
s

k
)
 𝑢 𝑥 0, s  −   

π

 s +k π2    p2−
s

k  
 
  + 

π

 s +k π2    p2+π2 
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                   = 
1

 𝑝− 
𝑠

𝑘
  𝑝+ 

𝑠

𝑘
 

  𝑢 𝑥 0, s −
π

 s +k π2   
    + 

π

 s +k π2    p2+π2 
 

                  =  
1

𝑝− 
𝑠

𝑘

−  
1

𝑝+ 
𝑠

𝑘

  
𝑘

2𝑠
  𝑢 𝑥 0, s −

π

 s +k π2   
    + 

π

 s +k π2    p2+π2 
 

                 Applying Lx
-1

 , we get 

  ⟹ 𝑢 (x, s)=  𝑒
  

𝑠

𝑘  
 𝑥

  −  𝑒
  

𝑠

𝑘  
 𝑥
   

𝑘

2𝑠
  𝑢 𝑥 0, s −

π

 s +k π2   
    + 

1

 s +k π2   
 sinπx       (7) 

                    Taking limit as x→ 1 

⟹ 𝑢 (1, s)=  𝑒
  

𝑠

𝑘  
 

  −  𝑒
  

𝑠

𝑘  
 
   

𝑘

2𝑠
  𝑢 𝑥 0, s −

π

 s +k π2   
    + 

1

 s +k π2   
 sinπ 

      But u(1, t) = 0 ⟹ 𝑢 (1, s) = 0 

⟹ 0 =  𝑒
  

𝑠

𝑘  
 

  −  𝑒
  

𝑠

𝑘  
 
   

𝑘

2𝑠
  𝑢 𝑥 0, s −

π

 s +k π2   
     

⟹ 𝑢 𝑥 0, s  = 
π

 s +k π2   
  

(7) ⟹ 𝑢 (x, s)=  𝑒
  

𝑠

𝑘  
 𝑥

  −  𝑒
  

𝑠

𝑘  
 𝑥
   

𝑘

2𝑠
  

π

 s +k π2   
−

π

 s +k π2   
    + 

1

 s +k π2   
 sinπx 

⟹ 𝑢 (x, s)=  
1

 s +k π2   
 sinπx 

 Applying Lt
-1

 , we get 

⟹ 𝑢(x, t)=  e− kπ
2t  sinπx                                                                        (8)                                                                          

The problem can be interpreted physically. The given equation is the heat equation, 

where u(x, t) gives the temperature at a point x at time t. Consider a section bounded by 

planes x=0 & x=1 & the boundary conditions u(0, t)=0=u(1, t) give the temperature zero 

at the planes. The condition u(x, 0) = sinπx indicates the initial temperature in 0< 𝑥 < 1. 

The u in (8) represents the temperature at time t> 0. 
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3.3 Double Laplace Transform & One Dimensional Wave Equation 

Example: Semi-infinite String 

Find the displacement w(x,t) of an elastic string subject to the following conditions:  

i) The string is initially at rest on the x-axis from x=0 to ∞. 

ii) For time t>0 the left end of the string is moved in a given fashion, namely, 

                      w(0,t) = 𝑓 𝑡 =  
sint     if 0 ≤ t ≤ 2𝜋

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

iii) Furthermore  lim𝑥→∞𝑤(𝑥, 𝑡) = 0 for t≥0. 

Of course, there is no infinite string, but our model describes a long string or rope (of 

negligible weight) with its right end fixed far out on the x-axis. 

Solution:  

     We have to solve the wave equation  
𝜕2𝑤

𝜕𝑡2
 = c

2
 
𝜕2𝑤

𝜕𝑥2
        where c

2
 = 

𝑇

𝜌
 

For positive x & t, subject to the boundary conditions  

w(0,t) = f(t) ,  lim𝑥→∞𝑤(𝑥, 𝑡) = 0                (t≥0) 

with f as given above, & the initial conditions w(x,0) = 0,  
𝜕𝑤

𝜕𝑡
│t=0 = 0    

we use the Double Laplace Transform on wave equation  

L t L x {
𝜕2𝑤

𝜕𝑡2
}    =   c

2
L t L x {

𝜕2𝑤

𝜕𝑥2
} 

       s
2
 𝑤 (p, s) – s 𝑤  (p, 0) – 𝑤 t(p, 0) =   c2   s2 w  p, s − p w  0, s − 𝑤 x(0, s)   

Given:   w(x, 0) = 0 ⟹ 𝑤  (p, 0) = 0  &  
𝜕𝑤

𝜕𝑡
│t=0 = 0 ⟹ 𝑤 𝑡  (p, 0) = 0  

           s
2
 𝑤  (p, s) =   c2   p2 w  p, s − p w  0, s − w ̅x(0, s)   

           (c
2
 p

2
 – s

2
) 𝑤  (p, s) = c2p w  0, s + c2𝑤 x(0, s) 

             𝑤  (p, s) = 
   c2p

 (c2  p2  – s2)
 w  0, s +

c2

(c2  p2  – s2)
     𝑤 x(0, s)                          (9)                                                                                                        

Now, w  0, s  = 𝐿𝑡   w(0, t) =   𝐿𝑡   f(t) = 𝑓 (𝑠) &  
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           w x(0, s) = lim𝑝→0 w x p, s = lim
𝑝→0

   𝐿𝑡  𝐿𝑥    wx(x, t)   = 

lim
𝑝→0

  𝑒−𝑠𝑡
∞

0
  𝑒−𝑝𝑥  wx(x, t)dx 

∞

0
 𝑑𝑡  

                           =  𝑒−𝑠𝑡∞

0
   wx(x, t)dx 

∞

0
 𝑑𝑡 =  𝑒−𝑠𝑡

∞

0
  lim𝑥→∞𝑤(𝑥, 𝑡) −  𝑤(0, 𝑡) 𝑑𝑡  

                           = − 𝑒−𝑠𝑡
∞

0
 𝑤(0, 𝑡)𝑑𝑡 = − 𝑓 (𝑠) 

From (9),  𝑤  (p, s) = 
   c2p

 (c2  p2  – s2)
 𝑓  𝑠 −

c2

(c2  p2  – s2)
 𝑓 (𝑠)     

                  𝑤  (p, s)  =  
1

2
 

1

𝑝−
𝑠

𝑐

+ 
1

𝑝+
𝑠

𝑐

 −  
2𝑐

𝑠
  

1

𝑝−
𝑠

𝑐

−  
1

𝑝+
𝑠

𝑐

  𝑓 (𝑠)     

By applying 𝐿𝑥  
−1, we get 

                 𝑤  (x, s)  =  
1

2
 𝑒  

𝑠

𝑐
 𝑥 +  𝑒− 

𝑠

𝑐
𝑥 −  

2𝑐

𝑠
  𝑒

𝑠

𝑐
 𝑥 −  𝑒− 

𝑠

𝑐
 𝑥  𝑓 (𝑠)    

                 𝑤  (x, s)  =  𝐴 𝑠 𝑒
𝑠

𝑐
 𝑥 +  𝐵 𝑠  𝑒−

𝑠

𝑐
 𝑥 𝑓 (𝑠)                                     (10)                                                                                                                              

  where  A(s) = 
1

2
  1 −  

𝑐

𝑠
   & B(s) = 

1

2
  1 +  

𝑐

𝑠
  

Again since   lim𝑥→∞𝑤(𝑥, 𝑡) = 0 for t≥0 

    Therefore,  

since   lim𝑥→∞𝑤  𝑥, 𝑠 = lim
𝑥→∞

   𝑒−𝑠𝑡
∞

0
 𝑤(𝑥, 𝑡)𝑑𝑡  =  𝑒−𝑠𝑡  lim

𝑥→∞
 

∞

0
𝑤(𝑥, 𝑡)𝑑𝑡 = 0 

This implies A(s) = 0 in (10) because c>0, so that for every fixed positive s the function 

 𝑒  
𝑠

𝑐
 𝑥

 increases as x increases. 

Therefore, (10) ⇒  𝑤  (x, s) =  𝐵 𝑠  𝑒−
𝑠

𝑐
 𝑥 𝑓 (𝑠)   

Since A(s) = 0 ⟹ c = s Therefore B(s) = 
1

2
  1 +  

𝑠

𝑠
  = 1 

          ⟹ 𝑤  (x, s)  =  𝑓 (𝑠)  𝑒−
𝑠

𝑐
 𝑥

 

Taking Lt
-1

, From second shifting theorem, we obtain 

w(x, t) = f(t - 
𝑥

𝑐
) u(t - 

𝑥

𝑐
) 
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w(x, t) = sin(t - 
𝑥

𝑐
) if   

𝑥

𝑐
 < t < 

𝑥

𝑐
+ 2𝜋 or ct> 𝑥 >  𝑡 − 2𝜋 𝑐 

             and zero otherwise. 

This is a single sine wave travelling to the right with speed c. 

Note that a point x remains at rest until t = 
𝑥

𝑐
 , the time needed to reach that x if one starts 

at t = 0            (starts of the motion of the left end) & travels with speed c. 
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