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Abstract— In this paper, the dynamic behavior of the 

structures subjected to moving mass is analyzed by modeling the 

structure as a simply supported beam under the moving mass. 

Fourth order Runge-Kutta numerical method is used to solve 

the resulting set of differential equations and a crack is modeled 

as a torsional spring with local flexibility connecting two 

segments of beam. A mathematical modeling and simulation is 

carried out to find the responses of healthy and damaged beam 

by writing a code in Matlab-R2009b.The responses of healthy 

and damaged beam under the moving mass are compared with 

increase in velocity of the moving mass. The response of the 

beam with moving sensor method is compared to that with fixed 

sensor at center. A midpoint deflection is observed to be large 

compared to that for moving sensor and at critical velocity, 

midpoint deflection is increasing continuously even when the 

moving mass reach to the end of beam. A very small difference 

can be observed between the deflection response of the healthy 

and damaged beam even with crack size 25% of the beam depth. 

Vibration acceleration of the beam is also investigated to 

identify the crack presence and its location. Deflection signals 

contain a small discontinuity at the crack location but it is not 

visible while this discontinuity is significant in the acceleration 

signals. The acceleration signals are helpful to identify the crack 

presence and its location more significantly the signals of beam 

under the travelling mass with lower velocity. 

Keywords—   S  imply supported beam; moving mass; 

cracked; dynamic analysis; acceleration 

I.  INTRODUCTION  

Modeling, computation and analysis of structural response of 

bridge type systems is very crucial to determine the service 

life of the structures. A vast research is carried out to analyze 

the midpoint deflection of the beam type structures under the 

moving load, moving mass and also moving vehicle. An 

extensive research is also carried out to develop the new 

methods to solve the resulting differential equation of motion. 

Akin and Mofld [1] presented numerical solution to find the 

response of beam under moving mass for different boundary 

conditions. In the field of structural health monitoring, 

detecting a crack, its location and severity is very important 

to avoid the failure of structures.  Ariaei et al. [2] presented 

discrete element technique and finite element method to 

determine the dynamic response of the un-damped Euler–

Bernoulli beams with open and breathing cracks under a 

point moving mass with different boundary conditions. 

Bilello and Bergman [3, 4] presented theoretical and 

experimental study to find the response of a damaged Euler–

Bernoulli beam subjected to the moving mass. Damage is 

modeled as rotational spring whose compliance is evaluated 

using linear elastic fracture mechanics. A small scale model 

of a prototype bridge structure is prepared for conducting the 

experiments to validate the analytical solution. Bulut and 

Kelesoglu [5] presented various analytical–numerical 

methods to determine the dynamic behavior of beams 

carrying a moving mass with different boundary conditions. 

A continuous model for vibration analysis of a beam with an 

open edge crack is presented. A quasi-linear displacement 

filed is suggested for the beam and the strain and stress fields 

are calculated. The equation of motion of the beam is 

calculated using the Hamilton principle and calculated 

equation of motion is solved with a modified weighted 

residual method. The natural frequencies and mode shapes 

are obtained [6, 7, 16]. Esen [8] used moving finite element 

approximation to investigate the dynamic response of a beam 

due to an accelerating moving mass. The effect of mass ratio 

and acceleration on dynamic response of beam is analyzed. 

Ichikawa et al. [9] carried out the vibration analysis of the 

continuous multi span beam subjected to a moving mass to 

see the effect of velocity of the moving mass and mass ratio. 

Lee et al. [10] and Lin and Chang [11] analyzed the dynamic 

response of Euler-Bernoulli beam with a single-sided crack 

subjected to a moving load. The beam is modeled as two 

separate beams divided by the crack. Mahmoud and Abou 

Zaid [12] investigated the effect of crack of size 50% on the 

dynamic response of the beam under the moving mass by 

using an iterative modal analysis approach. He found out that 

crack presence resulted in higher deflections and also changes 

the beam response patterns. Mehri et al. [13] presented 

response of beam under the moving load with different 

boundary conditions. Using the green dynamic function, he 

analyzed the results for different boundary conditions and 

velocity of moving load. 

Ouyang [14] presented the tutorial which covers the 

different topics of structural dynamics problems caused by 

moving mass. Pala and Reis [15] studied the effects of 

inertial, centripetal and Coriolis forces on the dynamic 

response of a simply supported beam with a single crack 

under moving mass load for the different velocity of the 

moving mass. To solve the governing differential equation of 

motion, a convolution integration method is used. Yavari et 

al. [17] analyzed discrete element analysis of dynamic 

response of Timoshenko beams under moving mass. Yang et 

al. [18] presented the effect of the crack, material property, 

and axial compression on the deflection response of the beam 
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with different boundary conditions. Kozar and Stimac [19] 

studied the deflection response of beam carrying a moving 

load. Average acceleration method has been employed since 

direct use of finite differences had shown as being practically 

unusable. 

An extensive study of dynamic midpoint deflection of the 

beam under the moving load, moving mass and moving 

vehicle is done for analyzing the effect of crack, velocity of 

the moving mass, mass ratio and crack location. Also beam 

with different boundary conditions are also considered for 

these problems. In this paper, in addition to the midpoint 

deflection of beam (fixed sensor at center) a moving sensor 

approach is also used to evaluate the complex behavior of the 

structures under the moving mass. The aim is to evaluate the 

deflection and acceleration response of the beam under the 

moving mass for the effect of crack and velocity. The 

acceleration graphs provide the qualitative picture for the 

identification of the crack presence and its location. 

 

II. THEORY AND FORMULATING THE SOLUTION 

A. Undamaged Beam  

 

 

 

 

 

 

 

 

 

 

 

 

A simply supported undamaged beam with moving mass 

is shown in Fig.1. It is assumed that the mass travels from left 

to right end in the direction x and the beam vibrates only in 

the y direction. Neglecting damping, rotary inertia, and 

shearing force effects, the governing equation of motion of 

the beam under the moving mass M can be written as [24]  

 
 

(1) 

with initial conditions:  

 

where I = Constant moment of inertia. 

m =Constant mass per unit length of the beam = ρA  

g = Uniform gravitational field and  

M= constant moving mass 

As the load is moving on the beam with a constant velocity ν, 

then 

 

 

(2) 

and  

 

(3) 

Therefore Eq. (1) can be written as 

 

 

 (4) 

Using the mode superposition principle, Eq. (4) can be 

written as 

 

 

 

     

(5) 

Where, Yn(x) is the mode shape of the beam. Multiplying 

with Ym(x) and integrating it over the beam length (0 to L) 

and using the orthogonality condition, Eq. (5) becomes 

 

 

 

 

 (6) 

Eq. (6) is solved numerically using fourth order Runge-

Kutta method considering the series expansion limited to first 

three modes only. 

B. Damaged Beam 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Simply supported beam under the moving mass 
 

 
Fig. 2 Simply supported cracked beam under the moving mass 
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Considering a simply supported beam of length L with 

open crack located at x=l1 in Fig. 2. A mass M is moving on 

the beam with constant velocity ν. The beam is divided into 

two segments by the crack. 

According to Euler-Bernoulli beam theory, the equation of 

motion for each part for free vibration can be written as 

 

 

 (7) 

Where, y1and y2 are vertical displacements for first and 

second part of beam. cf is local crack flexibility, and it is a 

function of the crack depth (α).  

 

 

(8) 

Where, (α=a/h) is the crack-depth ratio and for a single 

sided open crack [7] 

 

 

 

 (9) 

Now applying the boundary conditions for the simply 

supported beam 

 

 

 (10) 

And the continuous conditions to enforce the continuities 

of the displacement, bending moment, and shear force across 

the crack are given by  

 
 

 

 

 (11) 

Using the method of separation of variables as   

  
 in Eq. (7), we get 

  (12) 

where  (13) 

 

 

The solution of Eq. (12) for each part of beam can be written 

as 

  

 (14) 

 

 (15) 

Using the boundary conditions in Eq. (14)-(15), leads to 

  (16) 

And 

  

 (17) 

 

  

 (18) 

The Eq. (17)-(18) can be written in the matrix form as given 

in  

 (19) 

The constants of the second part A2, B2, C2, and D2 are 

related to the constants 

 

 

 

 

 (20) 

Whereas,  

 = ,   a1c = ,   a1sh = 

,   a1ch= ,   a2s= 

, 

a2c= ,    a2sh= , 

a2ch=  (21) 

The Eq. (20) can be written in matrix form as 

 (22) 

 

 

(23) 
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Inserting the Eq. (22) into (19) 

 (24) 

Whereas,  

 

 

 
 

For the non-trivial solution of the beam 

 
 (25) 

The characteristic equation for simply supported beam can 

be obtained from the Eq. (25). From the characteristic 

equation, we calculated the non-dimensional frequency. 

Using this non-dimensional frequency, the constants for first 

and second segment of the beam can be obtained.  

Now forced vibration solution of two parts of the beam can 

be written as  

 

 (26) 

 

Where, n and m =mode number, i=1and 2 (1= first part of 

beam and 2=second part of beam). 

 The Eq. (26) is a system of simultaneous differential 
equations with time-dependent coefficients. The closed form 
solution is not possible. Therefore, approximate analytical 
methods or more often numerical methods are used. The 
deflection of first part of beam can be found out by inserting 
Eq. (14) into the Eq. (26) for length (0< x <l1). Similarly, 
deflection of second part of beam is obtained by inserting Eq. 
(15) into the Eq. (26) for length (l1< x < L) and the Equation is 
solved by fourth order Runge-Kutta numerical method. 

III. RESULTS AND DISCUSSIONS 

The following example is considered for the calculation: 

L=20m, m=312Kg/m, E= 2.06×10
11 

N/m
2
, and ρ=7,800 

kg/m
3
. The results are obtained by expanding the equation of 

motion for first three modes of vibration and the moving 

mass is 20% of the total beam mass. The crack of size 25% is 

taken at the middle of the beam. The critical velocity 

(Vcr=46.3 m/s) is calculated from the natural frequency of 

the damaged beam. The results are plotted to analyze the 

deflection and acceleration response of cracked beam under 

the moving mass with varying velocities. The effect of the 

crack on the dynamic response of the beam under the moving 

mass with varying speed for fixed accelerometer at midpoint 

and moving accelerometer has been studied. The deflection 

and acceleration responses of healthy beam and damaged 

beam under the moving mass are compared. The results 

obtained are in good agreement with the results presented in 

literature [15]. The first three accelerating modes of healthy 

and damaged beam are shown in Fig. (3). The eigenvalues of 

the healthy beam are differentiated with very small value 

from that of the damaged beam. 

A.  The Effect of Crack with Change in Velocity 

It can be observed from the results shown in Fig. (4-7) 

that the maximum deflection occurs at different positions 

depending on the velocity of the moving mass and the 

maximum deflection position is shifting towards right with 

the increase in velocity.  For the lower velocities, the 

maximum deflection position occurs near the midpoint of 

beam in the region of 40% to 60% length of beam, while for 

higher velocities the maximum deflection occurs when the 

mass crosses the centre of beam.  

The profile of curve depends on the velocity; it changes to 

very small extent with the presence of crack. Obviously, the 

presence of crack increases the maximum deflection but this 

increment is very small compare to the deflection of healthy 

beam for this crack size. It is observed that at the critical 

velocity, the deflection response of healthy and damaged 

beam are nearly overlapped. So, we can say that for higher 

velocities greater than critical, the crack present at the middle 

of beam does not have major effect and the effect will be 

more for the velocities lower than critical. The mode shape 

and the dynamic response of beam contain a very small 

discontinuity at crack location but it is not visible.  

 

 

Fig. 3 First three mode shape of healthy and damaged beam 
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B. Comparison between the deflection of beam for moving 

sensor and fixed sensor  

When compared between the deflection of beam under the 

moving mass graphs for moving accelerometer and fixed 

accelerometer, it is observed that the midpoint deflection is 

higher compare to the deflection found by moving sensor 

method for all positions of moving mass. Midpoint deflection 

of beam with increase in velocity is increasing until the 

critical velocity is reached while for moving accelerometer, 

the deflection with increase in velocity is increasing until the 

higher velocity (V/Vcr=0.432) is reached.  

 Also it is observed that the midpoint deflection curve is 

shifting the phase near the end of beam. This behavior of 

curve continues until the higher velocity is reached. At 

critical velocity, the midpoint deflection of the beam 

increases continuously even the moving mass reach to the 

end of beam. While the deflection curves with moving sensor 

approach are not shifting the phase at any velocity. The 

deflection curve at the critical velocity follows the reducing 

pattern after it attained the maximum. 

The midpoint deflections are attained maximum earlier 

than the deflection with moving sensor at lower velocities. 

For higher velocities, the deflection with moving sensor is 

reached highest earlier and followed the decaying pattern 

while the midpoint deflection has taken longer time to reach 

highest.  

The rate of increment of the midpoint deflection of beam 

is more than that for the moving sensor at respective positions 

under the moving mass. For higher velocities, the maximum 

midpoint deflection of beam has increased to almost double 

the value of maximum deflection with moving accelerometer. 

C. Comparing acceleration response for undamaged and 

damaged  

Acceleration graphs are studied for both undamaged and 

damaged beam under the moving mass with varying 

velocities. The graphs are also compared for moving sensor 

and fixed sensor at middle. The graphs are plotted for the 

same problem and analyzed to identify the crack presence 

and its location. It could be observed that discontinuity 

appears at the crack location whereas it is smooth curve for 

undamaged at same location. The graphs plotted with fixed 

sensor at center of the beam under the moving mass are 

shown in Figs. (8-11). 

At lower velocity ratio (V/Vcr=0.108), discontinuity 

contained in signal is easily identifiable compare to other 

velocities. At all velocities, the discontinuity contained in 

signal is properly visible except for the velocity 

(V/Vcr=0.216).  

At lower velocity ratio (V/Vcr=0.108), as moving mass 

reaches to the crack location midpoint acceleration of beam 

suddenly gets increased and again follows the decaying 

pattern. While for the velocity ratio (V/Vcr=0.216), this 

sudden increase in signal is not properly visible and this may 

be due to the fact that the frequency of the signal is high. For 

velocity ratios (V/Vcr=0.432) and (V/Vcr=1), the midpoint 

acceleration of beam increases when moving mass crosses the 

crack but this increment is small.  

As such there is no change in acceleration values with the 

crack presence for lower velocity. At higher velocity, the 

acceleration is observed to be increased after the moving 

mass crossed the crack location. While for critical velocity, 

midpoint acceleration of cracked beam gets reduced when 

moving mass crosses the crack.  

The acceleration signals obtained with the moving sensor 

approach are given in the Fig. (12-15).A discontinuity 

observed in the acceleration signals is quite high compare to 

the fixed sensor results. For velocity ratio (V/Vcr=0.216), 

again the discontinuity is very small, while it is relatively 

visible for higher velocities. The same changes in 

acceleration values for particular velocity are observed 

similar to the fixed sensor approach. 

 

Fixed sensor at center 

 

Moving sensor 

Fig. 4 Deflection of undamaged and damaged beam under moving mass 

(α=0.25, l1=10m, V/Vcr=0.108) 
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Fixed sensor at center 

 

Moving sensor 

Fig. 5 Deflection of undamaged and damaged beam under 

moving mass (α=0.25, l1=10m, V/Vcr=0.216) 

 

 

Fixed sensor at center 

 

Moving sensor 

Fig. 6 Deflection of undamaged and damaged beam under moving mass 
(α=0.25, l1=10m, V/Vcr=0.432) 

 

 

Fixed sensor at center 

 

Moving sensor 

Fig. 7 Deflection of undamaged and damaged beam under moving mass 
(α=0.25, l1=10m, V/Vcr=1) 
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a) Undamaged 

 
b) Damaged 

Fig. 8 Acceleration of undamaged and damaged beam with fixed sensor (α=0.25, l1=10m, V/Vcr=0.108)

 

 
c) Undamaged 

 
d) Damaged 

Fig. 9 Acceleration of undamaged and damaged beam with fixed sensor (α=0.25, l1=10m, V/Vcr=0.216)

  

 
e) Undamaged 

 
f) Damaged 

Fig. 10 Acceleration of undamaged and damaged beam with fixed sensor (α=0.25, l1=10m, V/Vcr=0.432)

 
g)Undamaged 

 
h)Damaged 

Fig. 11 Acceleration of undamaged and damaged beam with fixed sensor (α=0.25, l1=10m, V/Vcr=1)
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a) Undamaged 

 
b)Damaged 

Fig. 12 Acceleration of undamaged and damaged beam with moving sensor (α=0.25, l1=10m, V/Vcr=0.108)

  

 
c) Undamaged 

 
d)Damaged 

Fig. 13 Acceleration of undamaged and damaged beam with moving sensor (α=0.25, l1=10m, V/Vcr=0.216)

 

 
e) Undamaged  

f) Damaged 
Fig. 14 Acceleration of undamaged and damaged beam with moving sensor (α=0.25, l1=10m, V/Vcr=0.432)

 

 
g)Undamaged 

 
h)Damaged 

Fig. 15 Acceleration of undamaged and damaged beam with moving sensor (α=0.25, l1=10m, V/Vcr=1)
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IV. CONCLUSION 

Dynamic deflection of the beam under the moving mass 

strongly gets affected with varying velocity of the moving 

mass. The dynamic response of beam under the moving mass 

is very complex, so attempt is made to understand the 

deflection and acceleration of beam with moving sensor and 

fixed sensor approach. With the fixed sensor approach, a 

large deflection is obtained at the critical velocity and with 

moving sensor approach the deflection is higher at higher 

velocity. The midpoint deflection is quite high compare to the 

deflection with moving sensor at all velocities. With the 

presence of crack, deflection of beam is evidently increasing 

but if the crack will be small, this increment of the deflection 

compare to the healthy beam deflection may not be visible. 

Acceleration graph at lower velocity (V/Vcr=0.108) is very 

helpful to identify the crack presence and its location. The 

change in acceleration values of the beam with the presence 

of crack at lower velocity is too small but for higher 

velocities, it is quite higher. The discontinuity contained in 

signals with moving sensor is evidently higher compare to 

that in signals with fixed sensor.  
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