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Abstract— This paper presents a novel approach to dynamic 

path planning for dexterous manipulation in robotic systems, 

implemented within a MATLAB framework. Our method 

focuses on addressing the challenges of collision-free object 

manipulation in dynamic environments. By leveraging dynamic 

spherical linear interpolation (SLERP), we achieve precise 

orientation control during manipulation tasks, allowing for 

smooth adjustments in response to changing conditions. The 

proposed approach optimizes motion planning and refines force 

control to enhance the robot's dexterity and adaptability. This 

work contributes to the development of more efficient and 

accurate motion planning for dexterous robotic manipulation in 

complex environments. 
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I. INTRODUCTION
Humans can instantly recognize how to grasp objects, a skill 
that remains far ahead of robotic capabilities. Grasping and 
manipulation represent significant challenges in robotics. The 
pursuit of building cognitive robots that match human 
dexterity has spanned decades, yet despite substantial 
progress, it remains an unsolved problem in both research and 
industry[1]. Dexterous manipulation involves multiple 
manipulators or fingers working together to grasp and 
manipulate objects, and its focus is object-centered. This 
contrasts with traditional robotics, where the emphasis is 
typically on the robotic manipulator itself. Instead, dexterous 
manipulation defines the task in terms of the object—how it 
should move and what forces need to be applied to achieve 
that movement. Conventional robotic grippers are 
insufficient for this level of control, requiring specialized 
robotic hands or fingers that can precisely manage forces and 
motions. Remarkably, even a human infant demonstrates 
more dexterity than current robots, although they are still far 
from the abilities of an adult in handling objects. 
At present, robotic dexterous manipulation is mostly limited 
to research environments, but model-based approaches have 
provided valuable insights into the mechanics of dexterous 
manipulation in both robots and humans. These insights are 
beginning to influence practical applications, such as in 

reconstructive surgery, where tendon transfer surgeries are 
used to enhance grasping abilities in patients with 
quadriplegia or nerve damage [2]. 
To improve interaction with objects, it's essential to measure 
the forces applied and the resulting effects on the object. 
Another key aspect is developing accurate contact models 
and selecting optimal grasp points, which play a crucial role 
in imitating the function of a human hand. Robotic hands can 
be equipped with force or tactile sensors to better mimic 
human dexterity [3]. 
In grasping and manipulation task, a robot is expected to 
efficiently and effectively grasp an object and then 
manipulate it. The goal of grasping is to ensure that the robot 
can fully grasp an object with its robotic hand. The key 
indicator of success here is the identification and firm 
grasping (picking) of the object, which means that the 
uncertainties related to the position, geometry, or nature of 
the object are efficiently removed and then controlling the 
movement of the grasped object is as simple as controlling 
the hand movement. On the other hand, manipulation means 
the application of force or motion to the same object to 
change its state and orientation in an environment. In contrast 
to robot grasping and manipulation, robotic perception in 
itself grounds the use of robots in the real world. Like human 
sensory organs responsible for tasks such as sight, hearing, 
touch, taste, and smell, it is crucial for robots to be able to 
perceive the real world and its dynamics if they are to 
autonomously assist humans[5]. 
It is well known that robots have speed and strength far 
superior to the human hand, but they cannot reliably grasp 
unfamiliar objects. This limitation is due to the varying 
shapes, sizes, and textures of objects, which makes it difficult 
to build superintelligent machines for household, 
manufacturing, and security applications. This difficulty 
stems from the inherent uncertainty in the robot’s physics, 
perception, and control. Virtually all applications, from 
manufacturing to service to security, would benefit from 
robots capable of grasping any object with a wide range of 
shapes and sizes, from rigid to deformable, and under a 
variety of frictional conditions. Yet despite over 43 years of 
research, this problem remains unsolved. One plausible 
reason is that robots rely on simplification of their 
environment, such as a specific arrangement of objects or 
strong backlighting that allows better perception and 
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localization of the object or subject. Therefore, to alleviate 
this problem, we need to enable robots to "see" by developing 
robust perception systems to localize objects and plan robust 
grasping positions on objects. 
A significant interest lies in developing robots that can 
function in dynamic, unstructured settings, such as in 
household tasks, bin-picking, or professional services. 
Learning-based approaches, especially machine learning, are 
increasingly being employed for robotic grasping. These 
methods enable robots to autonomously adapt to tasks 
without human intervention, significantly reducing the need 
for manual programming. Machine learning holds particular 
promise due to its ability to generalize to unfamiliar objects 
[1]. In section 2, the analytical approach and the various 
methods under are discussed along with the advancements to 
be made in achieving control in manipulation. 

II. CONTROL STRATEGIES FOR DEXTEROUS
MANIPULATION 

To achieve human-like grasping and manipulation with 
multi-fingered robotic hands, it is necessary to gather data 
such as joint angles, contact forces, and contact locations 
through the use of encoders, force sensors, and tactile sensors. 
Various research efforts have focused on emulating human 
grasping and manipulation by integrating these sensors. 
Studies employing traditional tactile sensors have shown that 
they can effectively control the position and orientation of 
objects based on sensory feedback. When humans adjust an 
object’s orientation or position in their hands, they do so with 
minimal finger motion, relying on a rolling contact between 
the fingertips and the object. Several studies have 
successfully recreated this behavior by employing the rolling 
constraint to ensure reliable grasping and manipulation [4]. 
The analytical approach to robotic grasping focuses on 
developing computational algorithms with minimal reliance 
on extensive data, allowing autonomous control of a robotic 
hand to complete tasks. This method is based on a physically-
grounded, algebraic description of an object in space—often 
as an approximation or simplification of the actual object or 
environment. The primary objectives include achieving 
dexterity, balance, stability, and dynamic performance, with 
various algorithms addressing each goal. Dexterity is realized 
by solving an unconstrained linear programming problem, 
where the objective function is defined by specific dexterity 
measures. Simultaneously, equilibrium is maintained through 
algorithms that ensure positivity, friction, and torque 
constraints on the robot’s fingers. Stability is targeted by 
algorithms that solve for fingertip impedances, ensuring 
positive definite grasp impedance matrices, while dynamic 
behavior algorithms calculate fingertip impedances that yield 
the desired dynamic response. 
Recently, data-driven approaches to grasping have gained 
significant traction, largely due to advancements in deep 
learning and self-supervised learning techniques, which excel 
in generalizing to novel objects and unpredictable 
environments. In these approaches, robots learn to grasp 
without relying on prior knowledge of the object's features, 
with training carried out end-to-end. Data-driven methods are 
typically evaluated empirically and do not necessarily adhere 
to the physical and dynamic constraints that analytical 
approaches explicitly model. These approaches are often 
categorized into supervised and unsupervised (reinforcement 

𝑆𝐿𝐸𝑅𝑃 (𝑞1, 𝑞2, 𝑡) =
sin ((1−𝑡)𝜃)

sin (𝜃)
𝑞1 +  

sin (𝑡𝜃)

sin (𝜃)
𝑞2

Here, 𝜃  represents the angle between the two quaternions, 
and t is a parameter that varies from 0 to 1. This formula 
allows for a smooth, continuous rotation from 𝑞1 when t = 0
to 𝑞2 when t = 1, making it an essential tool for achieving
stable and precise control in dexterous robotic manipulation 
tasks [3]. 

Dynamic SLERP in Dexterous Manipulation: 
In dynamic robotic systems, particularly in dexterous 
manipulation, SLERP can be combined with real-time sensor 
feedback and control algorithms. This dynamic adaptation is 
necessary when the robot interacts with objects in uncertain 
environments, where precise control over orientation and 
movement trajectory is crucial to ensure successful 
manipulation [4]. By continuously adjusting the SLERP 
interpolation based on sensory input, the robot can smoothly 
alter its grip or orientation as needed, thus improving its 
adaptability and precision in tasks such as object retrieval or 
assembly [5]. 
For example, in scenarios involving grasping deformable 
objects, real-time adjustments to the end-effector's 
orientation can be made using dynamic SLERP, helping 
maintain stability and precision while minimizing errors [6]. 
The dynamic extension of SLERP also enhances the robot's 
ability to cope with varying external forces and object  
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learning) methods [5].The overall manipulation is achieved 
by controlling the following: Impedance control, Force 
control, Position control and trajectory tracking. This paper 
focuses on dynamic SLERP, optimized path planning and 
more refined force control. Detailed presentations of most 
current dexterous manipulation approaches are analyzed in 
the subsequent section. The scope will include exploration of 
novel methods to improve the accuracy and robustness of 
robotic grasping and manipulation such as utilization of state-
of-the-art algorithms, vision sensors and dynamic control 
techniques. These advancements are designed to enhance the 
work performance of robotic systems when performing 
complex manipulation tasks. 

III. ADVANCEMENTS
A. Dynamic SLERP in Dexterous Manipulation
In the field of dexterous manipulation, precise orientation 
control of robotic end-effectors plays a crucial role. To 
achieve smooth and adaptive orientation transitions, 
especially when manipulating complex or dynamic objects, 
Spherical Linear Interpolation (SLERP) is commonly 
employed. SLERP is ideal for continuous and smooth 
rotational transitions, as it provides constant velocity and 
ensures that the interpolated orientations are on the shortest 
path between two quaternions [1].
Theoretical Basis of SLERP:
Spherical Linear Interpolation (SLERP) is a method used to 
transition between two orientations, represented by
quaternions 𝑞1 and 𝑞2, which reside on the surface of a 4D 
unit sphere. This interpolation method, grounded in spherical 
geometry, ensures that the transition occurs along a great 
circle, effectively minimizing the rotational path. The SLERP 
formula is expressed as [2]: 
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motions during manipulation, an important aspect for 
dexterous handling in unstructured environments [7]. 
Mathematical Extension of SLERP for Dynamic 
Manipulation: 
When applied in dexterous manipulation, SLERP can be 
integrated with control strategies such as impedance control 
or force feedback mechanisms to create a dynamic system. 
The process begins with defining the initial and target 
orientations as quaternions, 𝑞1  and 𝑞2. A smooth transition
can be achieved through SLERP by dynamically adjusting the 
interpolation parameter t based on real-time data such as 
tactile feedback from sensors on robotic fingers or visual 
feedback from cameras [8]. This dynamic approach is 
especially useful in multi-fingered robotic hands, where each 
finger might need to adjust its orientation in concert with 
others [9]. 
The practical application of SLERP in dynamic manipulation 
is evident in research on multi-sensory feedback systems, 
where the use of SLERP allows the robot to maintain smooth 
transitions between various configurations of its end-effector 
while responding to real-time changes in the environment 
[10]. Such systems have been shown to improve the robot's 
ability to manipulate complex, deformable objects, such as 
textiles or food products, with minimal disturbance [11]. 

B.Optimized Motion Planning for Dexterous
Manipulation
Optimal motion planning for dexterous robotic manipulation
has garnered significant interest due to the complex
challenges involved in navigating obstacle-rich
environments. In such settings, the ability to efficiently plan
a collision-free trajectory while maintaining grasp quality is
crucial for robotic systems. This section outlines the theory
behind optimal motion planning, emphasizing the integration
of kinematic and dynamic constraints to ensure smooth and
efficient manipulation.

1. Optimal Motion Planning:
Optimal motion planning in dexterous manipulation revolves
around finding a trajectory for the manipulator that minimizes
a given cost function, subject to constraints. The cost function
often incorporates factors such as energy consumption, time,
and path length. In the context of dexterous manipulation,
additional objectives such as maintaining grasp stability and
avoiding collisions must also be considered [2].
The general motion planning problem can be defined as:
Mininmise,

∫ 𝐽(𝑞(𝑡), �̇�(𝑡), �̈�(𝑡))𝑑𝑡
𝑇

0

 

where q(t) is the configuration of the robot at time t, �̇�(𝑡) and 
�̈�(𝑡)  represent the velocity and acceleration, respectively, 
and J() is the cost function representing factors like energy 
usage or path efficiency. 

2. Collision Avoidance Constraints:
In environments with obstacles, collision avoidance becomes
a key component of the optimization process. The
manipulator's trajectory must be planned such that no part of

the robot collides with the obstacles. This can be formulated 
as inequality constraints on the trajectory: 

𝑔𝑜𝑏𝑠(𝑞(𝑡)) ≥ 0
where 𝑔𝑜𝑏𝑠 is a function that represents the distance between
the manipulator and any obstacle. If the distance is positive, 
no collision occurs [3]. 

3. Kinematic Constraints and Joint Limits:
The configuration of the robot must respect kinematic

constraints such as joint limits and workspace boundaries. 
These constraints can be expressed as: 

𝑞𝑚𝑖𝑛 ≤ 𝑞𝑖(𝑡) ≤ 𝑞𝑚𝑎𝑥

where 𝑞𝑖(𝑡) is the joint angle of the i-th joint at time t, and
𝑞𝑚𝑖𝑛  and 𝑞𝑚𝑎𝑥  represent the joint's lower and upper limits,
respectively [6]. 

4. Grasp Stability:
In dexterous manipulation, it is essential to maintain a stable
grasp throughout the motion. The grasp stability is often
characterized by the grasp quality metric, 𝑄𝑜  , which
evaluates the robustness of the grasp. A common approach to
quantify grasp stability is based on wrench space analysis,
where the manipulator applies forces that generate the
necessary torques to hold the object [7].
The grasp quality function can be expressed as:

𝑄𝑜(𝑓𝑐) = 𝛾𝑚𝑖𝑛(𝐺𝑓𝑐)
where 𝑓𝑐  represents the contact forces, and 𝐺  is the grasp
matrix that maps contact forces to object wrenches 𝛾𝑚𝑖𝑛

represents the minimum eigenvalue, which is used to evaluate 
the grasp quality based on the stability of the applied forces 
[5]. 

5. Dynamic Constraints and Optimal Control:
In addition to kinematic constraints, dynamic constraints
govern the robot's motion, particularly when performing
tasks that involve rapid manipulation or large objects. The
dynamics of the system can be represented by the equations
of motion [3]:

𝑀𝑞" +  𝐶 (𝑞, 𝑞′)𝑞′ +  𝐺(𝑞) =  𝜏 

6. Learning-Based Optimization:
Recent advancements in learning-based methods have shown
promise for improving the efficiency of motion planning in
dexterous manipulation [1]. Learning-based approaches
leverage data from previous interactions to improve the
robot's ability to avoid obstacles and optimize trajectories in
real-time. These methods can significantly reduce the
computational burden of traditional optimization techniques
by learning a model of the environment and utilizing it to
guide the search for optimal trajectories.
Learning-based optimization techniques can be expressed as:

𝑞(𝑡 + 1) = 𝑞(𝑡) +  𝛼∇𝑞𝐽(𝑞(𝑡))

Where 𝛼∇𝑞𝐽(𝑞(𝑡)) is the gradient of the cost function with
respect to the robot configuration. This approach enables 
robots to refine their motion plans over time by adapting to 
environmental changes [9]. 
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7. Multi-Sensory Feedback:
Another crucial aspect of optimal motion planning is the use
of multi-sensory feedback, which enhances the robot's ability
to adapt its motion based on tactile, visual, and force sensor
data. Multi-sensory feedback allows the manipulator to detect
contact forces, object slippage, and proximity to obstacles in
real-time, facilitating the adjustment of its trajectory [4].

C.Refined Force Control for Dexterous Manipulation of
Robots
Force control can be categorized into two primary
approaches: impedance control and admittance control. In
impedance control, the robot's end-effector behaves like a
mechanical impedance, which modulates the relationship
between the applied forces and the resulting motion.
Conversely, in admittance control, the robot's motion is
dictated by the external forces applied to it.
Impedance Control:
Impedance control can be mathematically described by the
following equation:

𝐹 = 𝑀 (𝑥𝑑 ̈ − �̈�) + 𝐵 (𝑥𝑑 ̇ −  �̇�) + 𝐾 (𝑥𝑑 − 𝑥)
This model allows the manipulator to adapt its motion based 
on the interaction forces, ensuring compliance when needed, 
such as during delicate tasks 
Admittance Control: 
In admittance control, the relationship between force and 
motion is represented as: 

�̇� = 𝑀−1(𝐹 − 𝐷�̇� − 𝐾(𝑥 − 𝑥𝑑))
where: 
• F is the external force applied to the robot,
• the other variables are as previously defined.

This framework allows the manipulator to respond
dynamically to the forces acting on it, making it suitable for
tasks requiring quick adjustments [1][2].
Hybrid Control Strategies:
Recent advancements propose hybrid control strategies that
integrate both impedance and admittance control, allowing
for more versatile handling of objects. These strategies
combine the benefits of both approaches, enabling the robot
to switch between control modes based on the task
requirements [5][6].
Model Predictive Control (MPC):
MPC has emerged as a powerful tool in refined force control,
where the future states of the system are predicted based on a
dynamic model, allowing for proactive adjustments to the
control inputs. The optimization problem can be formulated
as:

𝑚𝑖𝑛
𝑢

∑ (‖𝑥𝑘+1 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡‖
2

+ 𝜆‖𝑢𝑘‖2)

𝑁

𝑘=0

subject to: 
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

where: 

• u represents control inputs,
• 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 is the target state,
• A and B are system matrices, and
• λ is a weighting factor [10][11].

This approach facilitates robust control in environments with 
uncertainties, improving the robot's ability to perform 
dexterous tasks. 

IV. PROBLEM STATEMENT
In order to incorporate dynamic SLERP (Spherical Linear 
Interpolation), optimized path planning, and more refined 
force control. The aim is to move a cube from an initial 
position pA  = [0,0,0] and orientation RA = I (identity matrix) 
to a final position pB=[1,1,1] orientation RB = (90-degree 
rotation about the z-axis). 

A. Initial and Final configurations
Initial Position:

pA  = [0, 0, 0] 

Initial Orientation: 

𝑅𝐴 = 𝐼 = [
1 0 0
0 1 0
0 0 1

] 

Final Position: 
pB = [1, 1, 1] 

Final Orientation (90-degree rotation around the z-axis): 

𝑅𝐵 = [
0 −1 0
1 0 0
0 0 1

] 

B.Trajectory Planning
For linear interpolation, the position trajectory is defined as:

p(t) = pA + t (pB - pA) 
where t ranges from 0 to 1. This is for generating a straight-
line path from pA  to  pB.
Orientation Trajectory: 
For the orientation, the SLERP is used, which smoothly 
interpolates between two orientations.  
The equation is: 

R(t) = RA . exp (log (RA
T RB) . t) 

where log and exp are matrix logarithm and exponential 
functions, respectively. This ensures smooth rotation along 
the shortest path on the sphere of orientations. 

C.Grasp Planning
The force closure criteria is used to determine the cube’s 
stable grasp points. Doing this we ensure that the applied 
forces at the grasp points can resist the external perturbations 
if any. Fig.1 illustrates the different positions of the grasping 
model.  
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Fig 1: Grasping Model 

For a successful force closure grasp, the fingers must initially 
be spread open through interactions with the object and 
surroundings, allowing the object to be either enclosed within 
a cage or positioned between two or more fingers that then 
apply force through internal spring mechanisms. 

D.Force Control
Impedance control is used to handle force interactions. The 
force equation is defined as: 

𝐹 = 𝑀 (𝑥

𝑑

̈ − �̈�) + 𝐵 (𝑥

𝑑

̇ −  �̇�) + 𝐾 (𝑥𝑑 − 𝑥)
Where F - Control force, M - Inertia matrix a square matrix 
that defines how mass is distributed in the system, B - 
Damping matrix helps to reduce oscillations and stabilize the 
system modulating velocity, K - Stiffness matrix reflects the 
systems resistance to deformation, 𝑥𝑑 - Desired position, x -
Current position, 𝑥

𝑑

̇  𝑎𝑛𝑑 �̇�  - Desired and present velocities, 
𝑥

𝑑

̈ 𝑎𝑛𝑑 �̈� - Desired and present accelerations.The first term in 
the equation allows the robot to react based on differences in 
desired and present accelerations. It generates the appropriate 
force needed to accelerate or decelerate to follow the desired 
trajectory. The second term helps dampen the motion. If the 
present velocity exceeds the desired velocity this produces a 
force to slow down the robot to achieve a smooth movement 
and also prevents overshooting. The third term generates a 
restoring force that brings the robot back to the necessary 
position. If there are any deviations from the path this term 
ensures it falls back in the right path. 

The impedance control approach focuses on regulating the 
manipulator's dynamic behavior, rather than controlling 
specific vector quantities like force, position, or velocity. 
This method enables uniform handling of all task conditions, 
such as free motions or physical interactions, by simply 
defining and imposing an appropriate dynamic response on 
each robotic finger. Additionally, this approach offers several 
key advantages, including simplifying the overall control 
system. A dexterous robotic hand presents significant 
complexity, involving many degrees of freedom, a large 
volume of sensory information, and multiple control goals. 
Impedance control enables each finger to be viewed as an 
independent system, helping to mask the nonlinear and 
interconnected dynamics of the mechanical structure with a 
preferred dynamic response. To simplify, this desired 
response is often modeled as linear and decoupled across 
different workspace directions, similar to a mass-spring-
damper system. This approach significantly reduces the 
complexity for the supervisory control system [6]. 

E.Dynamic Simulation
The force equation for dynamic simulation is given by: 

𝑀𝑞" +  𝐶 (𝑞, 𝑞′)𝑞′ +  𝐺(𝑞) =  𝜏 +  𝐽𝑇𝐹
where M - inertia matrix, C - centrifugal matrix, G – gravity 
vector, J – jacobian matrix, F – external forces and the control 
torque. The product of force and Jacobian changes according 
to the forces that act at the end of the manipulator affecting 
the torque on each joint. The equation is solved using Euler’s 
method to simulate motion over time, the present state q and 
q’ is updated based on the calculated torque and force values 
iteratively. The 𝜏  is controlled by the feedback from the 
sensors achieving adaptive control. 

F. Simulation Outcomes
On simulating these equations in MATLAB, the trajectory 
followed to move a cube from an initial position pA  = [0,0,0] 
to a final position pB=[1,1,1] was simulated and the output 
graph was obtained The desired position and orientation is 
computed and is updated. The same checks for grasp stability 
and applies impedance control to calculate the force. 
In the simple interpolation approach, the cube moves along a 
straight path from the initial position to the final position with 
linear progression in both translation and orientation. The 
movement is smooth and predictable but lacks sophistication 
in terms of handling dynamic constraints or environmental 
factors. The cube transitions between the start and end points 
without considering variations in forces or system dynamics, 
which works for basic tasks but doesn't account for real-world 
complexities. Fig.2 shows the outcome of the approach. 
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Fig 2: Simple Interpolation 

The dynamic SLERP interpolation offers a significant 
improvement by interpolating the orientation using spherical 
linear interpolation. This technique ensures that the cube 
follows the most natural rotational path between its initial and 
final orientations. Unlike the linear method, which can 
produce abrupt or unnatural rotations, SLERP guarantees 
smooth, continuous orientation changes, especially important 
for tasks like rotating the cube by 90 degrees about the z-axis. 
Compared to simple interpolation, SLERP provides better 
rotational accuracy, making it more suitable for environments 
where precise orientation is critical. Fig.3 showcases the 
smooth rotational path achieved with SLERP interpolation. 

 Fig 3: Dynamic SLERP Interpolation 

The optimal motion planning approach further refines the 
motion by applying gradient descent to find the most efficient 
path between the start and end positions. Instead of following 
a direct linear path, this method minimizes a cost function to 
optimize the cube’s trajectory. While simple interpolation 
doesn’t account for possible inefficiencies or constraints, 
optimal motion planning dynamically adjusts the cube's 
trajectory, resulting in a more energy-efficient and time-
optimal path to the final position pB=[1,1,1]. This is 
particularly beneficial in more complex environments where 
direct paths may not be ideal or feasible. Figure 4 displays the 
optimized trajectory using motion planning. 

Fig. 4. Optimal Motion Planning 

Lastly, refined force control combines techniques like 
impedance, admittance, and hybrid control with model 
predictive control (MPC) to generate a motion that is adaptive 
and responsive to external forces. This advanced approach 
ensures that the cube not only reaches its destination 
optimally but does so by considering both internal dynamics 
and external environmental factors, making the motion 
highly adaptive. Compared to simple interpolation, refined 
force control offers superior precision and stability in 
handling complex environments, such as those with varying 
stiffness or unknown obstacles, resulting in a more realistic 
and robust performance. Fig.5 illustrates the adaptive 
behavior of the refined force control strategy. 

Fig. 5. Force Control 

Combining these approaches, we leverage advanced 
techniques to control both the position and orientation of the 
cube, achieving a final output position of approximately 
[0.993, 0.993, 0.993], which is nearly identical to the target 
[1, 1, 1]. The close but slightly imperfect result stems from 
the iterative nature of the optimization process and the trade-
offs involved in maintaining both smooth motion and control 
stability. As the cube moves, smooth rotational transitions  
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and gradual positional adjustments are made simultaneously, 
ensuring that the motion appears natural and fluid. However, 
the final slight deviation from the exact target can be 
attributed to the inherent limitations of gradient-based 
optimization methods, which, while effective at convergence, 
may not always reach the precise target due to the step size 
and the balancing of dynamic factors. This outcome 
demonstrates how combining multiple control methods 
enhances overall system performance but still may introduce 
small, acceptable inaccuracies in real-world applications. The 
visual output from this approach, as shown in Fig.3, 
illustrates dexterous manipulation achieved with these 
combined advancements. 

Fig 6. Dexterous Manipulation 

V. CONCLUSION
Therefore, in this research, a novel method for dynamic path 
planning has been developed and proposed to advance 
dexterous manipulation with robotic systems. With the help 
of realizing dynamic spherical linear interpolation (SLERP) 
in MATLAB, our approach provides a potential solution for  
avoiding-object-collision problem in dynamic environment. 
Precise orientation control under the condition of adaptability 
is a phenomenal leap featured in the flexibility and motility 
of robotics. While preliminary versions of the validations 
bear great potential, more testing is needed to explore the 
potential use of our methodology in actual practice. 
Therefore, this work lays the foundation for faster and more 
reliable motion planning that facilitates robotic manipulation  

While initial conceptual validation has been completed, 
further experimentation is required to fully evaluate the 
performance in practical scenarios. 
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