
Dynamic Programming Solution for Query 

Optimization in Homogeneous Distributed 

Databases 
 

 
Ms. Anju Mishra 

Department of Computer Application, IEC-CET,Greater Noida 

 

Ms. Gunjan Nehru 

Department of Computer Application, IEC-CET, Greater Noida 

 

Mr. AshishPandey 

Sapient Consulting, Gurgaon 

 

 

Abstract 
 

Due to new distributed database applications such as huge deductive database systems, the search 

complexity is constantly increasing and we need better algorithms to speedup traditional relational 

database queries. Now a days distributed database applications are applied on Heterogeneous distributed 

database systems and developing Homogeneous distributed databases. The “multiple query 

optimization” (MQO) tries to reduce the execution cost of a group of queries by performing common 

tasks only once, whereas traditional query optimization considersa single query at a time An optimal 

dynamic programming method for such high dimensional queries has the big disadvantage of its 

exponential order and thus we are interested in semi-optimal but faster approaches. 

In this work we present a multiple query optimization on homogeneous distributed database application 

through dynamic programming for semi optimal solution. 

 

Keywards: Distributedinformation retrieval (DIR), Multiple query optimization” (MQO) 

 

1. Introduction  

Distributed Systems is described as a partnershipamong independent cooperating centralized systems. 

Based on this concept the number of large scale applications has beeninvestigated during past decades 

among which distributedinformation retrieval (DIR) systems has developed to provide a singlesearch 

interface that provides access to the available databasesinvolving resource descriptions building for each 

database,choosing which databases to search for particular information,and merging retrieved results 

into a single result list [2]-[3]. 

In this work we proposed a dynamic programming approach to get the solution for query optimization in 

distributed database. 
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2. Distributed Database 

 
A distributed database (DDB) is a collection of multiple,logically interrelated databases distributed over 

a computernetwork. This resource distribution improves performance,reliability, availability and 

modularity that are inherent indistributed systems. As with traditional centralized databases,distributed 

database systems (DDBS) must provide anefficient user interface that hides all of the underlying 

datadistribution details of the DDB from the users. 

 The use of arelational query allows the user to specify a description of thedata that is required 

without having to know where the data isphysically located [4]. 

Data retrieval from different sites in a DDB is known asdistributed query processing (DQP). 

Distributed Databases supports two types of distributed databases: homogenous and heterogeneous. In a 

homogenous distributed database system, each database is of same type. In a heterogeneous, distributed 

database system, at least one of the databases is of different type. The figure 1 below shows the 

illustration of homogeneous and heterogeneous distributed databases. 
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Figure1.  Homogeneous & Heterogeneous Distributed Databases 

A homogenous distributed database system is a network of two or more Databases of same type that 

reside on one or more systems. Figure.2. illustrates a distributed system that connects three databases: 

HQ (Headquarter), MFG (Manufacturing), and SAL (Sales). An application can simultaneously access 

or modify the data in several databases in a single distributed environment. For example, a single query 

from a Manufacturing client on local database MFG can retrieve joined data from the table1 on the local 

database and the table2 on the remote database. 

Manufacturing  Headquaters 

     MFG  HQ 

 

 

 

      SAL 

         

 Sales   

 

 

 

 

Figure 2. Distributed Database 

For a client application, the location and platform of the databases are transparent by distribution 

transparency. You can also create synonyms for remote objects in the distributed system so that users 

can access them with the same syntax as local objects. For example, if you are connected to database 

MFG but want to access data on database HQ, creating a synonym on MFG for the remote T2 table 

enables you to issue this query: 

SELECT * FROM T2; 
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In this way, a distributed system gives the appearance of native data access. Users on MFG do not have 

to know that the data they access resides on remote databases. 

3. Query Processing 

 
The path that a query traverses through a DBMS until its answer is generated is shown in 

Figure 3.The system modules through which it moves have the following functionality: 

 The Query Parser checks the validity of the query and then translates it into an internalform, 

usually a relational calculus expression or something equivalent 

 The Query Optimizer examines all algebraic expressions that are equivalent to the given 

queryand chooses the one that is estimated to be the cheapest. 

 The Code Generator or the Interpreter transforms the access plan generated by the optimizer into 

calls to the query processor. 

 The Query Processor actually executes the query. 

Queries are posed to a DBMS by interactive users or by programs written in general-purpose 

Programming languages (e.g., C/C++, FORTRAN, PL-1) that have queries embedded in them. An 

Interactive (ad hoc) query goes through the entire path [8]. 
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Figure 3: Query flow through a DBMS. 
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4. Query Optimization in Distributed Database 

 

Global query management provides the ability to combine data from different local databases in a single 

retrieval operation. The necessity for global query management arises in an open, heterogeneous 

multidatabase system, since autonomy and heterogeneity of component databases have given rise to a 

number of new major issues regarding the global query optimization strategy and context mediation 

including data conversion and query translation. For instance, some local DBMSs never support semi 

join operator which has been proposed in order that data transmission between sites could be reduced. In 

this regard, the global query optimization strategies developed for homogeneous distributed database 

systems make extensive use of semi joins which are not attractive in the multidatabase context since this 

may increase the local processing time. Moreover, these do not consider the cost incurred as a result of 

data conversion and query translation[5].A major cost in executing queries in a distributed database 

system is the data transfer cost incurred in transferring relations (fragments) accessed by a query from 

different sites to the site where the query is initiated. The objective of a data allocation algorithm is to 

determine an assignment of fragments at different sites so as to minimize the total data transfer cost 

incurred in executing a set of queries. This is equivalent to minimizing the average query execution 

time, which is of primary importance in a wide class of distributed conventional as well as multimedia 

database systems.Our basic principle to get a high performance is that we decompose a global query to 

the finest level of subqueries in order to explore all possible execution plans. 

 

5. Components and Problems of Distributed Query Optimization 

 
There are three components of distributed queryoptimization [10][11]: 

 

5.1 Access Method: In most RDBMS products, tables canbe accessed in one of two ways: by 

completely scanningthe entire table or by using an index. The best accessmethod to use will always 

depend upon the circumstances.For example, if 90 percent of the rows in the table aregoing to be 

accessed, you would not want to use an index. Scanning all of the rows would actually reduce I/O 

andoverall cost. Whereas, when scanning 10 percent of thetotal rows, an index will usually provide more 

efficientaccess. Of course, some products provide additionalaccess methods, such as hashing. Table 

scans and indexedaccess, however, can be found in all of the "Big Six"RDBMS products (i.e., DB2, 

Sybase, Oracle, Informix,Ingres, and Microsoft). 

5.2 Join Criteria:If more than one table is accessed,the manner in which they are to be joined 

together must bedetermined. Usually the DBMS will provide severaldifferent methods of joining tables. 

For example, DB2provides three different join methods: merge scan join,nested loop join, and hybrid 

join. The optimizer mustconsider factors such as the order in which to join thetables and the number of 

qualifying rows for each joinwhen calculating an optimal access path. In a distributedenvironment, 

which site to begin with in joining the tablesis also a consideration. 

5.3 Transmission Costs:If data from multiple sitesmust be joined to satisfy a single query, 

then the cost oftransmitting the results from intermediate steps needs to befactored into the equation. At 

times, it may be more costeffective simply to ship entire tables across the network toenable processing 
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to occur at a single site, therebyreducing overall transmission costs. This component ofquery 

optimization is an issue only in a distributedenvironment. 

 

6. Dynamic Programming Solution 

 

Dynamic programming is a method for solving complex problems by breaking them down into simpler 

subproblems. It is applicable to problems exhibiting the properties of overlapping subproblems which 

are only slightly smaller and optimal substructure (described below)whenapplicable; the method takes 

far less time than naive methods. 

The key idea behind dynamic programming is quite simple. In general, to solve a given problem, we 

need to solve different parts of the problem (subproblems), and then combine the solutions of the 

subproblems to reach an overall solution. Often, many of these subproblems are really the same. The 

dynamic programming approach seeks to solve each subproblem only once, thus reducing the number of 

computations: once the solution to a given subproblem has been computed, it is stored or "memo-ized": 

the next time the same solution is needed, it is simply looked up. This approach is especially useful 

when the number of repeating subproblems grows exponentially as a function of the size of the input. 

6.1 Elements of Dynamic Programing: 

Optimal Substructure:A problem exhibits optimal substructure if an optimal solution to the problem 

contains within it optimal solutions to subproblems. It is often easy to show the optimal sub problem 

property as follows:- 

1. Split problem into subproblems . 

2. Sub problemsmust beoptimal, otherwise the optimal splitting would not have been optimal. 

Overlapping Subproblem:In overlapping subproblems the space of subproblems must be small in the 

sense that a recursive algorithm for the problem solves the same subproblems over and over.But in 

dynamic programming same subproblem resolved once and result used in repeated subproblem. 

Memoization: Dynamic programming algorithm typically take advantage of overlapping subproblem 

once and then storing the solution in a table where it can be looked up when needed.  

Based on the study of the previous work, we proposed a scheme to reduce the search space of 

Dynamic Programming based on reuse of query plans among similar subqueries. The method generates 

the cover set of similar subgraphs present in the query graph and allows their corresponding subqueries 

to share query plans among themselves in the search space. Numerous variants to this scheme have been 

developed for enhanced memory efficiency and one of them has been found better suited to improve the 

performance of Iterative Dynamic Programming. 

7. Need of Cost Factors 

 
In a centralized DBMS, query execution “cost” is a single dimensional factor measured in conceptual 

units. In a distributed database, costs must be dividing into multiple dimensions under the control of 

single logical database. One proposal for a universal cost metric is hard currency, but typically there are 
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other costs that are valuable to expose orthogonally, including response time, data freshness, and 

accuracy of computations [12].  

 

8. Need of Cost Estimation 

A centralized optimizer cannot accurately estimate the costs of operations at many autonomous sites.Z. 

G. Ives and A. Tomasicperposed middleware systems in [13, 14] address this problem by involving site 

specific wrappers in the optimization process, but they do not consider the cost of communicating with 

these wrappers. This cost is not significant in these systems because the wrappers typically reside in the 

same address space as the optimizer. But in general, the execution costs may also depend on transient 

system issues including inter communication cost between two sites. Therefore cost estimation process 

must be distributed in a manner reflective of the query processing, with cost estimates being provided by 

the sites that would be doing the work. However, to the best of our knowledge, complete cost 

estimation, which requires the optimizer to communicate with the sites merely to find the cost of an 

operation, has not been studied before. In such a scenario, communication may become the dominant 

cost in the query optimization process. The high cost of costing raises a number of new design 

challenges, and adds additional factors to the complexity of distributed query optimization. 

9. Query Graph Model 

The Query Graph Model is an example of preferred internal representation of user query, and join graph 

is an example of preferred canonical form. A join graph denominates a user query representation having 

nodes connected by edge, where each node represents relation and edge represents a join predicate. A 

relation denominates a database table having tuples and column. A join predicates relates columns of 

two relations to be joined by specifying conditions on column values. The Cardinality of a relation 

denominates the number of tuples embraced by the relation and the Selectivity of a join predicate 

denominates the expected fraction of tuples for which the join column value in the relation satisfies the 

predicate. Query cardinality is the product of cardinalities of every relation in the query times the 

product of selectivity factor of the query predicates. 

A hybrid technique for joining tables that selects a join execution plan from among the well-known 

“nested- loop” and “sort-merge” methods. A method for optimizing query execution that relies on 

measuring the degree of”clustering” (sortedness) in the stored relations.The testing of each join column 

to calculate the degree of clustering of the column values in their storage order to estimate the number of 

page accesses required for a partial index scan. These estimates are then used to calculate the cost of 

each proposed join execution plan. 

 Any user query can be recast as a join graph made up of some combination of “linear” and “star” 

subgraphs.”Linear queries” can be describe as a series of relation nodes each connected by predicate 

edges to no more than two  other  relation nodes. ”Star queries” describes as a group of relation nodes 

with a single central relation node connected by predicate edges to each of the other relation nodes. A 

join graph representing such a series of two way join as a canonical form of the query graph 

model(QGM). The practitioner may then either exhaustively enumerates all possible “feasible plans” for 
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join execution, using “dynamic programming” or may employ some “heuristically limited” search 

method to reduce the number of alternative plans  in the search space considered by the optimizer. It is 

easily proven that dynamic programming never eliminates optimal plan, because all possible plans 

enumerated and evaluated. However any” heuristic” search method presents some non-zero probability 

of excluding superior execution plan without notice.There are usually many feasible plans for any given 

query and many practitioners use the exponential worst-case complexity argument to justify a priori 

search space truncation through heuristic search methods. Dynamic programming search space grows as 

N!, Here in, a search space denominates a set of executable query plans selected on the basis of some 

criteria related to primitive database operators.   

Heuristic search method for query optimization is limiting the time and space complexity by truncating 

the enumeration of feasible query execution plans. Dynamic programming(DP) is the time honored 

method for optimizing join queries in relational database management systems and virtually all 

commercial optimizer rely on some abbreviated form of DP for this purpose. DP uses exhaustive 

enumeration with pruning to produce “optimal” execution plans without missing the best of these plans 

[7]. 

For a given query, the search space can be defined as theset of equivalent operator trees that can be 

produced usingtransformation rules. The example bellow illustrates 3equivalent join trees, which are 

obtained by exploiting theassociative property of binary operators. Join tree (c) whichstarts with a 

Cartesian product may have a much higher costthan other join trees [2]. 

SELECT ENAME, RESP 

FROM EMP, ASG, PROJ 

WHERE EMP.ENO=ASG.ENO  

AND ASG.PNO=PROJ.PNO 

 

 
  

 PNO ENO ENO,PNO 

 

  PROJ EMP X ASG 

 ENO  PNO  

 

EMP ASG ASG PROJ PROJ EMP 

 

        

Figure 4.Query equivalent trees 
 

Regarding different search spaces, there would be differentshape of the join tree. In a linear tree, at least 

one operand ofeach operand node is a base relation. However, a bushy treemight have operators whose 

both operands are intermediateoperators. In a distributed environment, bushy trees are usefulin 

exhibiting parallelism [18]. 
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     R4   

        

 R3                        R1  R2      R3 R4 

  

     R1 R2 

 (a) linear join tree    (b) bushy join tree 
 

Figure 5. Linear vs. bushy join tree 

In DP optimizer the cardinality of the join of N relations is the same regardless of join order, the “cost” 

of joining in different orders may vary substantially. Accordingly, for an N-way join query, there are N! 

Permutations of relation join orders embraced by the “search space” generated by DP [7]. 

10. Related Works 

 
Three most common types of algorithms for join-orderingoptimization are deterministic, Genetic and 

randomizedalgorithms [15]. 

Deterministic algorithm, also known as exhaustive searchdynamic programming algorithm, 

produces optimal left-deepprocessing trees with the big disadvantage of having anexponential running 

time. This means that for queries withmore than 10-15 joins, the running time and space 

complexityexplodes [15].Genetic and randomized algorithms [16]-[17] on the otherhand do not 

generally produce an optimal access plan. But inexchange they are superior to dynamic programming in 

termsof running time. Experiments have shown that it is possible toreach very similar results with both 

genetic and randomizedalgorithms depending on the chosen parameters. Still, thegenetic algorithm has 

in some cases proved to be slightlysuperior to randomized algorithms.Layers of distributed query 

optimization have beendepicted in Figure6. 
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There are number of Query Execution Plan for DDB suchas: row blocking, multi-cast optimization, 

multi-threadedexecution, joins with horizontal partitioning, Semi Joins, andTop n queries. In this paper 

we propose a dynamic programming algorithm for Query optimization in homogeneous distributed 

database systems [2]. 

 

11. COST MODEL 
 

11.1Cost Model in DBMS 

 

The cost model assigns an estimated cost to any partial or complete plan in the searchspace. It also 

determines the estimated size of the data stream for output of every operatorin the plan. It relies on: 
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a) A set of statistics maintained on relations and indexes, e.g., number of data pages in arelation, 

number of pages in an index, number of distinct values in a column 

b) Formulas to estimate selectivity of predicates and to project the size of the output datastream 

for every operator node. For example, the size of the output of a join is estimatedby taking the 

product of the sizes of the two relations and then applying the jointselectivity of all applicable 

predicates. 

c) Formulas to estimate the CPU and I/O costs of query execution for every operator.These 

formulas take into account the statistical properties of its input data streams,existing access 

methods over the input data streams, and any available order on the datastream (e.g., if a data 

stream is ordered, then the cost of a sort-merge join on that streammay be significantly reduced). 

In addition, it is also checked if the output data stream willhave any order. 

  

The cost model gives a cost estimate for each operator tree. The cost refers to resourceconsumption, 

either space or time. Typically, query optimizers estimate the cost as timeconsumption [6]. 

 

 

 10.2Cost Model in Distributed DBMS 

 

In a distributed execution environment, there are two different time consumptionestimates to be 

considered: total time or response time. The former is the sum of the timeconsumed by each processor, 

regardless of concurrency, while the latter considers thatoperations may be carried out concurrently. 

Thus, response time is a more appropriateestimate, since it corresponds to the time the user has to wait 

for an answer to the query.In a distributed environment, the execution of an operator tree S is split into 

severalphases. Pipelined operations are executed in the same phase, whereas a storing 

indicationestablishes the boundary between one phase and the subsequent one. Resource contention is 

also another reason for splitting an operator treeinto different phases. For instance, if a sequence of 

operations that could be concurrentlyexecuted require more memory than available (e.g., if the memory 

is not sufficient tostore the entire hash tables for pipelined operations in the hash join algorithm), then it 

issplit into two or more phases. An operator tree is also split into different phases ifindependent 

operations (which, in principle, could remain in the same phase) should beexecuted at the same home 

site: in this case, the operations are not concurrently executedjust because the homes are the same and, 

accordingly, they are scheduled at differentphases [6]. 

 

An optimizer cost model includes cost functions to predictthe cost of operators, and formulas to evaluate 

the sizes ofresults. Cost functions can be expressed with respect to eitherthe total time, or the response 

time [18]-[19]. The total time isthe sum of all times and the response time is the elapsed timefrom the 

initiation to the completion of the query. The totaltime (TT) is computed as below, where TCPUis the time 

of aCPU instruction, TI/Othe time of a disk I/O, TMSGthe fixedtime of initiating and receiving a message, 

and TTRthe time ittakes to transmit a data unit from one site to another, and TDELAYthe time of waiting for 

the producer to deliver the first result tuples 

 

TT = TCPU * #insts + TI/O * #I/O  + TMSG * #msgs + TTR * #bytes + TDELAY * #insts 

 

When the response time of the query is the objectivefunction of the optimizer, parallel local processing 

and parallelcommunications must also be considered. This response time(RT) is calculated as bellow: 
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RT = TCPU * seq_#insts + TI/O * seq_#I/Os + TMSG * seq_#msgs +TTR * seq_#bytes+ TDELAY * seq_#insts 

 

Most early distributed DBMSs designed for wide areanetworks have ignored the local processing cost 

andconcentrate on minimizing the communication cost. Considerthe following example: 

 

TT = 2 * TMSG + 2*TDELAY +TTR * (x +y) 

RT = max {TMSG+TDELAY +TTR * x, TMSG+TDELAY   + TTR * y } 

 

Where, x and y considered to be two queries processing in parallel. In parallel transferring, response 

time is minimized byincreasing the degree of parallel execution. This does notimply that the total time is 

also minimized. On contrary, it canincrease the total time, for example by having more parallellocal 

processing (often includes synchronization overhead and it may increase the local processing time and 

comprising it will increase the total time )and transmissions. Minimizing the total time implies that 

theutilization of the resources improves, thus increasing thesystem throughput. In practice, a 

compromise between thetotal and response times is desired [2] 

 

12. Dynamic Programming Approach 
 

The Dynamic Programming(DP) approach is recursively called for larger subgraph to give the solution 

for join graph. The Dynamic Programming (DP) process for query graph subset of TL or fewer relations, 

where TL represents the predetermined size limits that may be arbitrarily selected to limit the solution 

space. The join graph is divided into subgraphs not more than TL relation nodes [7]. Through dynamic 

programming we will get improved query optimization technique that can be applied immediately to any 

database 

The following conventions are used in describing algorithm: 

• sc: candidate set of plans; 

• S [i, j]: either empty set, representing no solutionfor the cost value j; or set of “candidate setof plans” 

obtained by using plans from the set {1, 2, . . ., i} and containing exactly one plan foreach query with a 

total cost j (that is, if S [i, j] is not empty, its sets represent solutions with cost jfor all queries from 1 up 

to the query of a plan pi); 

• PSi: starting plan number for the query qi(that is,plans from PSito PSi+ Pibelongs to query qi); 

• Cost (sc: candidate set of plans): summation of thecosts of the tasks in the tasks set obtained from 

theunion of the tasks of the plans (task sets) in sc. 

Candidate sets are obtained by adding new plans topreviously obtained candidate sets. The 

recurrence relationfor candidate sets S [i, j ] is as follows: 

S [i, j] =∪ {sc∪ {pi} | ∀scsuch that cost (sc∪ {pi}) 

= j, and query number of plan i is q 

and, sc∈S [plans of previous query (PSq−1 to PSq−1), potentially usefulcosts (j − Cito j)]. 

Using the inductive proof technique with an inductionon cost values from 0 to C and query 

numbersfrom 0 to Q, the correctness of the above recurrencerelation can easily be shown. The proof is 

based onthe following argument: if up to a certain cost value c,for queries from 1 to q − 1, all plan sets 

includingone plan for each query are known, then, these plansets can be extended with a plan for query 

q, producingcost values c, c + 1, . . . such that the cost valuesare calculated. 

The DP algorithm implementing this recurrence relationin a bottom-up manner. Forthe base case of the 

recurrence relation S [0, 0] = {{ }}, represents that if there is no query, a plan containingno tasks (plan 

number 0) with total cost 0 is the solution. The starting indexes of theplans for each query, namely 

PSq’s.The candidate sets, S, are generated in a column wise manner for cost values startingfrom 1 and 
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considering plans from 1 to P. Sincethe candidates are sets of plans, and since plans may have common 

tasks, it is even possible to use a planset with total cost equal to the current cost, and extendit with the 

current plan and still obtain the same cost.This can occur if the current plan’s tasks are commonwith the 

task set formed from the tasks of the plan set.Therefore, all the columns from “the current columnminus 

the cost of the current plan” (in case no commontask between the current plan and existing plan 

set’stasks) to “the current column” must be examined [1]. 

Dynamic Programming Psuedocode 

 

Plan-based DP  algorithm 

Input: Join Graph G and size limit TL 

Output: sc: solution set of plans that contains exactly one plan for each query 

1  // initialization 

2 S[∗, ∗]= { } 

3 S[0, 0] = {{ }} 

4 PS0= 0; P0= 1 

5  for i= 1 to Q 

6  PSi= PSi−1+Pi−1 

7  // main part 

8  for j = 1 to C // cost values 

9  for i= 1 to P { // plans 

10   // query number of plan i 

11   q = pqi 

12   for k = PSq−1 to PSq− 1 // consider plans belonging to previous query only 

13   //query optimization of query number k 

14 While |Gk| > 1 do   //stop when no more relations to join 

15     MinCost = ∞      //use minimum cost 

16     //examine all unjoined connected pairs  

17     for x,y in Gk connected by an edge do   

18      //try both join order       

19      Join=mincost(plan[x]×plan[y],plan[y]×plan[x])   

20      if JoinCost<MinCost then//remember minimum cost join 

21       Next Join=Join 

22       r=min(x,y) 

23       s=max(x,y) 

24       MinCost=JoinCost 

25      endif 

26     endfor 
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27     //has that sizelimit been exceed? 

28     if |relation[r] U relation[s]| >TL then  

29      //call DP on larger subgraph 

30      if |relation[r] > relation[s]| then  

31       t = r 

32      else 

33       t = s 

34      endif 

35      //defer join and move to step 14 for subgraph for plan 

36      plan[t] = go to step 14(relation[t])  

37      relation[t] = {(relation[t])}//treat relation[t] as compound                                      

38           element 

39     else        

40      plan[r] = NextJoin //update plan associated with r 

41      relation[r] = relation[r] U relation[s] //collapse s into r 

42      relation[s] = 0 

43     endif 

44    endwhile 

45    relation[1]    //last relation for subgraph 

46    for m = max(j −Ci , 0) to j // consider candidates for previously obtained 

cost values 

47      if S[k,m] _= {} then 

48       for each scin S[k,m] // consider all the candidates in the  

            entry 

49        if cost(sc∪ {pi}) = j then 

50       { 

51        S[i, j] = S[i, j] ∪ {sc∪ {pi} 

52       } 

53         if i≥PSQ then return sc 

54 End Algorithm 
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Onthe other hand to prevent more than one plan for thesame query from appearing in the 

candidate plan set,only the rows corresponding to the plans of previousquery must be included in the 

search space. As a result,the set of candidates at column j and row iis determinedby using the candidates 

at rows from PSq−1 toPSq−1 wherePSq≤i < PSq+1 andcolumns from j −Cito j. All possiblecandidates 

obtained at each entry must be kept forfurther iterations. It is possible to obtain a new candidateif there 

is a candidate in the searched area that can be extended by the currentplan. Notice that the existing 

candidate can be extended by a new plan if the totalcost of the union of the plans is equal to the 

currentcost value (or column number) [1]. For internal loop the procedure used produces a canonical 

Query Graph Model (QGM) herein denominated the “join graph G”.  

 Join graph G : Query Graph Model (QGM) 

 TL: Enumeration threshold, which is the input of predetermined limit for this process. 

Enumeration threshold TL represents the maximum number of relations in any subgraph GL 

referred to the dynamic programming (DP) optimization process and operates for DP search 

space used in optimizing graph G. 

 Relations[x]:the base relation or relation subgraph corresponding to relation node x. 

 Plan[x]: the query execution plan selected by DP for node x. 

 

The process is initialized with relation[x] ={x} and plan[x] =ACCESS(x) 

 The mincost is first set as high as possible. In inner loop of internal loop first, connected node 

pair (relation[r],relation[s]) is tested for execution cost in both the directions. The optimal two-way join 

plan for two relations from the search space having two plans differing only in join order. The cost of 

optimal join order for connected node pair (relation[r],relation[s]) is then tested against mincost and, if 

the cost is not less than mincost, the procedure returns to select another connected node pair for 

evaluation. If the new two-way join plan has an execution cost that is less than the mincost saved from 

the previous optimal two-way plan, then reset some parameters to save the two-way join plan as the new 

“next join” (the new optimal two-way join plan) and tests for more untested connected node pairs.  

 If more connected node pairs await testing, then selects another such connected pair (arbitrarily) 

and returns to evaluate the next pair. If no untested connected pairs remain to be evaluated, then test the 

two-way join complexity by adding the node joinder numbers for the connected node pair 

(relation[r],relation[s]) found to have the lowest cost of all such pairsin graph G. This sum is compared 

to the enumeration threshold TL,if this sum is less than TL then merges the connected node pair 

(relation[r],relation[s]) into a single node r having a new node joinder number, i.e. sum of node joinder 

number of connected node, and node relation[s] is eliminated from the join query graph G. The 

procedure returns to re-examine every one of the connected node pairs in the join query graph modified 

by the merger of nodes r and s. 

When a candidate isgenerated for a plan that belongs to the last query, thealgorithmstops and 

returns that candidate as a solution. The verification of whether the obtainedcandidate set is a solution or 

not is trivial. If the planbelongs to the last query, and a candidate is found,then, that means this candidate 

contains exactly oneplan for each query, thus it is a solution [7]. 

 

13.  Conclusion 

 

 
In Homogeneous Distributed Database the query optimization has boon proposed with dynamic 

programming approach. Although deterministic dynamic programming algorithmproduces optimal left-
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deep processing trees, it has the bigdisadvantage of having an exponential running time. Geneticand 

randomized algorithms on the other hand do not generallyproduce an optimal access plan. But in 

exchange they aresuperior to dynamic programming in terms of running time.However,a dynamic 

programming approach give us efficient solution for Query optimizationin homogeneous distributed 

database system.We use “JOIN OPERATION” to estimating the cost in an intermediate stage of 

execution. If a new JOIN OPERATION estimates the lesser cost than we use that NextJoin and 

corresponding minimum cost. Hence this process used iteratively for multiple queries in homogeneous 

distributed database system. 
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