

Dynamic Proof of Storage in Cloud for Multiple

User Environments

a Rakshitha H.N, b Mrs.Shruthi Prabhakar, c Mrs. Rachana C.R.
a IV Sem, M.Sc(CS)., DOS in Computer Science.
b Assistant Professor, DOS in Computer Science.

c Associate Professor and Head, DOS in Computer Science.

PG Wing of SBRR Mahajana First Grade College, Pooja Bhagavat Memorial Mahajana Education,

Metagalli, K.R.S Road, Mysuru, India

Abstract - Dynamic Proof of Storage (DeyPoS) is a utility

authority primitive that authorizes the files integrity and

systematically modernizes the files in a cloud server. A sensible

multi-user cloud storage system holds the solid client-side cross-

user deduplication technique, which authorizes a user to hop the

uploading process and secure ownership of the file instantly and

when variant owner of the same file have to upload them to the

same cloud server. The concept of DeyPos and secure cross-user

deduplication concurrently is introduced in this paper.

Regarding the problem of structure diversity and private tag

generation, we utilize a novel tool named Homomorphic

Authenticated Tree.

Keywords- Cloud Server, Deduplication, Dynamic Proof Of

Storage, Ownership Proof.

I. INTRODUCTION

Storage externalization is more attractive to both industry and

academia due to the advantages of low cost, high accessibility

and easy sharing. Data integrity is main objective of the cloud

storage. User should be convinced that the files keep within

the server don’t seem to be tampered. Traditional techniques

for safeguarding data integrity, similar Message

authentication codes (MACs) and digital signatures need

users to transfer all of the files from the cloud server for

authentication that incurs a heavy communication. Thus

techniques don’t seem to be sequestrate for cloud storage

services wherever users could check the integrity frequently

like each hour.

Thus researchers establish proof of storage (PoS) for

checking the Integrity, while not downloading files from the

cloud server users need many dynamic operations like

modification, insertion, and deletion and updating to

maintaining the prospective of PoS, dynamic PoS enroll

authenticated structures, like Merkle tree.

In these schemes, each block of a file is attached a

(cryptographic) tag that is employed for substantiating the

integrity of that block. Once a proponent wants to deduce the

integrity of a file, it selects some block indexes of the file,

and sends them to the cloud server. Even with these

challenged indexes, the cloud server returns the

corresponding blocks along with their tags. The proponent

checks the block integrity and index correctness.

The former can be directly bounded by cryptographic tags.

How to affect the latter is that major variation between PoS

and dynamic PoS. In most of the PoS schemes the block

index is “encoded” into its tag, which implies the proponents

will examine the block integrity and index correctness

concurrently. However, dynamic PoS cannot encode the

block indexes into tags, since the dynamic operations could

modification several indexes of non updated blocks, that

incurs unwanted computation and communication cost. As an

example, there is a file consisting of one thousand blocks and

a replacement block is inserted behind the second block of

the file. Then, 998 block indexes of the first file are modified,

which implies the user should generate and send 999 tags for

this update. However, dynamic PoS remain to be upgrade in

multi-user environment, due to the demand of cross-user

deduplication on the client-side. This suggests that users can

skip the uploading methodology and acquire the possession

of files currently, as long as a result of the uploaded files

exists already among the cloud server. This methodology can

reduce storage space for the cloud server, and save

transmission bandwidth for users.

II. LITERATURE SURVEY

I carried out extensive survey of literature and consolidated

the results which are as follow:

[1] A secure and dynamic Multi-keyword ranked search

scheme over encrypted cloud data. In this paper, a secure,

efficient and dynamic search theme is planned, which

supports not only the accurate multi-keyword stratified search

however conjointly the dynamic deletion and insertion of

documents. A balanced binary tree as the index is constructed

and “Greedy depth-first search” algorithm is preferred to

obtain higher strength than linear search. In the proposed

theme, the data owner is to responsibility for generating

change data and creates them to cloud server. The data owner

must store the unencrypted index tree and also the data.

[2] Security and privacy in cloud computing: A Survey. One

of the leading interesting challenges within the area of social

calculate and social media investigation is that the supposed

community analysis. An accepted barrier in multiple website

analysis is that the separation of those websites. This paper

aims to make proof on the existence of a mapping among

identities across multiple communities providing a technique

for connecting these websites.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NLPGPS - 2017 Conference Proceedings

Volume 5, Issue 21

Special Issue - 2017

1

[3] From security to Assurance in the cloud: A Survey. Cloud

property at lower prices, and higher performance and without

having to care about infrastructure management still, cloud

occupant remain worried with the cloud’s level of service and

the non functional properties their applications can count on.

The research community has been in the focus on the

nonfunctional aspect of the cloud paradigm, among which

cloud safety stands out. The analysis in this article focuses on

the interface between cloud security and cloud security

assurance.

[4] Proofs of ownership in Remote Storage Systems. In this

paper, an idea of proof-of-ownership is set, a client can prove

to a server that it has a copy of a file without sending it. This

authorizes to counter attacks on file deduplication systems

where the attackers get a “short summary” of the file and uses

it to fool the server into thinking that the attacker owns the

entire file.

[5] Hybrid provable data possession at untrusted stores in

cloud computing. It shows the core problem, if an untrusted

server to store client info. We will obvious knowledge

possession within the model, which cut back the knowledge

block access, but additionally cut back the quantity of

computation on the server and consumer and server traffic.

Our design and development on the PDP program is in the

main supported the usage of rhombohedra and uneven coding

system. It exceeds what we did in the past; the improvement

has brought to the bandwidth, computation and storage

system. And it applied the public (third party) verification.

Finally, we additionally expect our program, it supports

dynamic outsourcing of information create it a additional

realistic application of cloud computing surroundings

[6] Compact proofs of retrievability. In this paper, built from

BLS signatures and secure in the random oracle model,

features a proof-ofretrievability protocol in which the client’s

query and server’s response are both extremely short. This

scheme allows public verifiability: anyone can act as a

verifier, not just the file owner. Our second scheme, which

builds on pseudorandom functions (PRFs) and is secure in the

standard model, allows only private verification. It features a

proof-of-retrievability protocol with an even shorter server’s

response than our first scheme, but the client’s query is long.

Both schemes rely on homomorphic properties to aggregate a

proof into one small authenticator value

[7] Provable data possession at untrusted stores. It shows, two

provable-secure PDP schemes that are more efficient, even

when compared with schemes that achieve weaker

guarantees. In particular, the over head at the server is low, as

opposed to liner in the size of the data. Experiments using our

implementation verify the practicality of PDP and reveal that

the performance of PDP is bounded by disk input output and

not cryptographic computation.

[8] Scalable and Efficient Provable Data Possession. It shows

how to frequently, efficiently and securely verify that a

storage server is faithfully storing its client’s data. The

storage server is assumed to be untrusted in terms of both

security and reliability. The problem is exacerbated by the

client being a small computing device with limited resources.

Prior work has addressed this problem using either public key

cryptography or requiring the client to outsource its data in

encrypted form .It efficiently supports operations like block

modification, deletion and append

[9] Proof of storage from homomorphic identification

protocols. In this paper proofs of storage are interactive

protocols helps to client to verify that a server trusty stores a

file. Previous work has proofs of storage can be constructed

from any homomorphic linear authenticator (HLA). Roughly

speaking, are signature/message authentication schemes

where ‘tags’ on multiple message can be homomorphically

merge to yield a ‘tag’ on any linear combination of these

messages. We gave a frame work for building public-key

HLAs from any identification protocol satisfying certain

homomorphic properties. We then show how to turn any

public-key HLA into publicly-verifiable PoS with

communication complexity independent of the file length and

supporting an unbounded number of verifications.

[10] Dynamic proof of Retrievability for coded cloud storage

systems. A new dynamic proof of retrievability idea for

coded cloud storage systems. Network coding and erasure

codes are affect to encode data blocks to achieve within-

server and cross-server data redundancy.

[11] A dynamic proof of retrievability scheme with 0(log n)

complexity. It shows cloud storage conducts security

concerns one major concern is about the data probity. We

extend the static PoR idea to dynamic framework. We present

a new authentication data structure called Merkle b+ tree.

Compared to the existing dynamic PoR idea, our worst case

communication complexity is 0(log n) instead of 0(n).

[12] Practical Dynamic proofs of retrievability. In this paper,

a dynamic PoR scheme with constant client storage whose

bandwidth cost is comparable to a Merkle hash tree, thus

being very practical is proposed. The structure out performs

the constructions of Stefanov et al. and Cash et al. both in

theory and in practice. Specifically for n outsourced blocks of

bits each writing a block requires +0(log n) server

computation. Audits are also very efficient.

III. EXISTING SYSTEM

In most of the existing dynamic PoS, a tag used for integrity

verification is generated by the secret key of the up loader.

Thus, other owner who have the ownership of the file but

have not uploaded it due to the cross-user deduplication on

the client-side cannot generate a new tag when they update

the file. This time, the dynamic PoS would fail.

Halevi et al. introduced the concept of proof of ownership

which is a solution of cross-user deduplication on the client-

side. It requires that the user can generate the Merkle tree

without the help from the cloud server, which is a big

challenge in dynamic PoS. Pietro and Sorniotti proposed

another proof of ownership scheme which improves the

efficiency.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NLPGPS - 2017 Conference Proceedings

Volume 5, Issue 21

Special Issue - 2017

2

Xu et al. proposed a client-side deduplication scheme for

encrypted data, but the scheme employs a deterministic proof

algorithm which indicates that every file has a deterministic

short proof. Thus, anyone who obtains this proof can pass the

verification without possessing the file locally.

The cloud server and users do not fully trust each other. A

malicious user may cheat the cloud server by claiming that it

has a certain file, but it actually does not have it or only

possesses parts of the file. A malicious cloud server may try

to convince users that it faithfully stores files and updates

them, whereas the files are damaged or not up-to-date.

Existing dynamic PoS cannot be extended to the multi-user

environment is a disadvantage.

Other drawback is all existing techniques for cross-user

deduplication on the client-side were designed for static files.

Once the files are updated, the cloud server has to regenerate

the complete authenticated structures for these files, which

causes heavy computation cost on the server-side.

Due to the problem of structure diversity and private tag

generation, existing system cannot be extended to dynamic

PoS, Unfortunately, these cannot support deduplication due

to structure diversity and private tag generation is a

disadvantage of existing system.

IV. PROPOSED SYSTEM

To institute a primitive called deduplication dynamic proof of

storage, which clarify the structure diversity and private tag

generation challenge?

In divergence to the live authenticated construction, like skip

list and Merkle tree, we planned an authenticated

construction known as Homomorphic Authenticated Tree, to

diminish the communication cost in both the proof of storage

and deduplication both stage along with computation cost.

HAT can support honesty verification, dynamic operations

and cross-user deduplication with good stability.

We suggest and implement a systematic construction of

deduplicatable dynamic PoS. it helps inexhaustible number of

verification and update operations.

Some advantages are it is an efficient authenticated structure.

It supports secure cross-user deduplication.

Performs are better especially when the file size and the

number of the challenged blocks are large.

V. SYSTEM ARCHITECTURE

Fig.1: The system model of deduplication Dynamic PoS

In our architecture, we consider two entities like cloud server

and user and it contain five phases Such as pre-process,

upload, update, deduplication and proof of storage. Upload

phase is a unidirectional process from the original user. Users

have to prove their proof of ownership in multi-user

environment.

VI MODULES

Our system construction model considers two types of

entities: the cloud server and users. For each file Original

user the user who uploaded the file to the cloud server, while

subsequent user is the user who proved the ownership of the

file but did not actually upload the file to the cloud server.

In the cloud entity, the cloud first checks login authentication

of users and then it gives permission for deduplication

process for authenticated users and user’s data are stored in

blocks.

In block generation model users can update the files only if

they have the ownership of the files, which means that the

users should upload the files in the upload phase or pass the

verification in the Deduplication phase.

There are five phases in dedulicatable dynamic PoS system:

pre-process, upload, deduplication, update and proof of

storage.

In the pre-process phase, users intend to upload their files.

The cloud server decides whether these files should be

uploaded. If the upload process is granted, go into the upload

phase; otherwise, go into deduplication phase.

In the deduplictaion phase, the files to be uploaded already

exist in the cloud server. The subsequent users possess the

files locally and the cloud server stores the authenticated

structures of the files. Subsequent users need to convince the

cloud server that they own the files without uploading them

to the cloud server.

Update the cloud server has to reserve the original file and

the authenticated structure if there exit other owners, and

record the updated part of the authenticated structure, Since

each update is only “attached” to the original file and

authenticated structure.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NLPGPS - 2017 Conference Proceedings

Volume 5, Issue 21

Special Issue - 2017

3

Users only possess a small constant size metadata locally and

they want to check whether the files are faithfully stored in

the cloud server without downloading them. The files may

not be uploaded by these users, but they pass the

deduplication phase and prove that they have the ownerships

of the files.

Homomorphic Authenticated tree reduce the communication

cost in both the proof of storage phase and the deduplication

phase with similar computation cost.

VII. IMPLEMENTATION

The project has been implemented with the following

software tool JAVA/J2EE, Netbeans 7.2.1, MYSQL.

1. Building Blocks

We deploy the following tools as our building blocks:

1) Collision-resistant hash functions: A hash function H: {0,

1}* → {0, 1}* is collision-resistant if the probability of

finding two different values x and y that satisfy H(x) = H(y)

is negligible.

2) Deterministic symmetric encryption: The encryption

algorithm takes a key k and a plaintext m as input, and

outputs the cipher text. We use the notation Enc k(m) to

denote the encryption algorithm.

3) Hash-based message authentication codes: A hash-based

message authentication code HMAC: {0, 1}* × {0, 1}* → {0,

1}* is a deterministic function that takes a key k and an input

x, and outputs a value y. We define HMAC k(x) def =

HMAC (k, x).

4) Pseudorandom functions: A pseudorandom function f: {0,

1}*× {0, 1}* → {0, 1}* is a deterministic function that takes a

key k and a value x, and outputs a value y that is

indistinguishable from a truly random function of the same

input x. We Define fk(x) def= f (k, x).

5) Pseudorandom permutations: A pseudorandom

permutation π : {0, 1}*× [1, n] → [1, n] is a deterministic

function that takes a key k and an integer x where 1 ≤ x ≤ n,

and outputs a value y where1 ≤ y ≤ n that is indistinguishable

from a truly random permutation of the same input x. We

define π k(x) def= π (k, x).

The leaf node tag generation algorithm:

 1: procedure LEAFTAG (αs , kc , αc , ci , li, lil, vil)

2: τi ← αsci

3: lii ← fkc (il|| lil || vil) + αcτl

4: return τl, ti l

The non-leaf node tag generation algorithm:

1: procedure NONLEAFTAG (kc, i, li, vi)

2: τ2i ← t2i − fkc (2i || l2i || v2i)

3: τ2i+1 ← t2i+1 − fkc (2i + 1|| l2i+ || v2i+1)

4: return ti ← fkc (i ||li || vi) + τ2i + τ2i+1

6) Key derivation functions: A key derivation function KDF:

{0, 1}*× {0, 1}*→ {0, 1}* is a deterministic function that can

derive a secret key from two secret values.

2. Pre-process Phase

In the pre-process phase, a user runs the initialization

algorithm (id, e) ← Init (1, F) which computes: e ← H (F), id

← H(e). Then, the user announces that it has a certain file via

id. If the file does not exist, the user goes into the upload

phase. Otherwise, the user goes into the deduplication phase.

3. Upload Phase

Let us the file F = (m1. . . mn). The user first invokes the

encoding algorithm (C, T) ← Encode (e, F)

4. Deduplication Phase

If a file announced by a user in the pre-process phase exists in

the cloud server, the user goes into the deduplication phase

and runs the deduplication protocol res ∈ {0, 1} ←

Deduplicate (U(e, F), S(T)).

5. Update Phase

A user can arbitrarily update the file, such as modify a block,

insert a batch of blocks, and delete some blocks, by invoking

the update protocol res ∈ {he*, (C*, T *)i,⊥} ← Update

(U(e, ι, m, OP), S(C, T)). After all operations are finished,

the user uploads the updated blocks of the file and the

updated nodes of the HAT to the cloud server. Then, the user

computes the updated metadata e* and verifies the updated

blocks via the checking protocol.

 6. Proof of Storage Phase

Every time, users can go into the proof of storage phase if

they have the ownerships of the files. The users and the cloud

server run the checking protocol res ∈ {0, 1} ← Check (S(C,

T), U (e)) interactively to check the file integrity in the cloud

server

VIII. EXPERIMENTAL RESULTS:

Registration Form:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NLPGPS - 2017 Conference Proceedings

Volume 5, Issue 21

Special Issue - 2017

4

User login

File uploading

Duplication checking

File details

Proof of storage

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NLPGPS - 2017 Conference Proceedings

Volume 5, Issue 21

Special Issue - 2017

5

VIIII. CONCLUSION

A novel tool known as HAT is used. The first practical

deduplicatable dynamic PoS scheme called DeyPoS is

implemented effectively. The abstract and experimental result

shows that DeyPos implementation is efficient, especially

once the file size and the variety of the challenged blocks

area unit is massive.

REFERENCES
 [1] Kun He, Jing Chen, Ruiying Du, Qianhong Wu, Guoliang Xue,

and Xiang Zhang,”De-duplicatable dynamic proof of storage for

multi-user environments,” IEEE Transactions. 2016

[2] Z.Xia. Wang, X.Sun, and Q.Wang, “A Secure and Dynamic

Multi-Keyword Ranked Search Scheme over Encrypted Cloud

Data,” IEEE Transactions on Parallel and Distributed Systems,

vol.27, no.2, pp.340-352, 2016

[3] Z.Xiao and Y.Xiao, “Security and privacy in cloud computing: A

Survey,” IEEE Communications Surveys Tutorials, vol.15, no.2,

pp.843-859, 2013.

[4] C.A.Ardagna, R.Asal,E.Damiani, and Q.H.Vu, ”From Security

to Assurance in the Cloud: A Survey,” ACM Comput.Surv.,

vol.48,no.1,pp.2:1-2:50,2015.

[5] S.Halevi, D.Harnik, B.Pinkas, and A.Shulman-Peleg, ”Proofs of

ownership in remote Storage systems,” In proc, of CCS, PP.491-

500, 2011.

[6] Narn-Yam Lee and Yun-kunachang. “Hybrid provable data

possession at untrusted stores in clod computing,” In Proc, of

CCS, pp.598-609, 2007.

[7] H.Shacham and B.Waters,”Compact proofs of Retrievability,”

journal of Cryptology, vol.26, no.3, pp. 442-483, 2013.

[8] G.Ateniese, R.Burns, R.Curtmola, J.Herring, L.Kissner, Z.

Peterson, and D.Song, “Provable data possession at untrusted

stores,” in Proc. of CCS, pp. 598-609, 2007.

[9] G.Ateniese, R.Di Pietro, L. V. Mancini, and G. Tsudik,

“Scalable and Efficient Provable Data Possession,” in Proc. of

SecureComm, pp. 1-10, 2008.

[10] G.Ateniese, S.Kamara, and J.Katz, “Proofs of storage from

homomorphic identification protocols,” in Proc. of

ASIACRYPT, pp.319-333, 2009.

[11] Z.Ren, L.Wang, Q.Wang and M.Xu,”Dynamic proofs of

Retrievability for coded cloud storage systems,” IEEE

Transaction son Services Computing vol. pp, no. 99, pp. 1-1,

2015.

[12] Z.Mo, Y.Zhou, and S.chen,”A dynamic proof of retrievability

(PoR) scheme with 0(log n) complexity,” in Proc.of ICC, pp.

912-916, 2012.

[13] E.Shi, E.Stefanov, and C.Papamanthou,”Practical dynamic

proofs of retrievability,” in Proc. of CCS, pp. 325-336, 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NLPGPS - 2017 Conference Proceedings

Volume 5, Issue 21

Special Issue - 2017

6

