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Abstract-- The purpose of paper analyzes influence of 

foundation mass on dynamic response of beam on non-uniform 

foundation subjected to a moving vehicle. This foundation model 

includes non-uniform linear elastic springs, shear layer, viscous 

damping and special consideration of the influence of a 

characteristic parameter of foundation mass. The moving 

vehicle is assumed to be consisted of two nodal masses that are 

connected by means of a spring-damper components. The 

equation of motion for the beam-vehicle-foundation interaction 

element is derived by means of dynamic balance principle. After 

by assembling the stiffness, damping and mass matrices, and 

vectors of nodal loads of all elements based on finite element 

method, the governing equations of motion for the integrated 

system are obtained and solved by step-by-step integration 

method procedure. The accuracy of the algorithm is verified by 

comparing the numerical results with the other numerical 

results in the literature. Also, the effects of characteristic 

parameter of foundation mass on dynamic analysis of beam-

vehicles interaction are investigated detail. The results show that 

the influence of foundation mass has effects significantly on 

dynamic response of beam-vehicle interaction and more 

increasing dynamic response than others without influence of 

foundation mass. 

Keywords-- Foundation mass; moving vehicle; non-uniform 

foundation; dynamic analysis of beam-vehicle interaction 

I. INTRODUCTION  

One of the most fundamental foundations suggested quite 
early is Winkler model in 1867. It has been commonly used in 
engineering application and attracted attention of many 
researchers in during many last decades with the uniform or 
non-uniform foundation stiffness considered as linear or 
nonlinear elastic springs [1-6].  

But, one of the most important deficiencies of the Winkler 
model is appearance a displacement discontinuity between the 
loaded and the unloaded part of the foundation surface. Hence, 
several other foundation models had proposed by introducing 
some kind of interaction between the in-dependent springs by 
visualising various types of interconnections to overcome the 
deficiency of  Winkler model such as: Filonenko [7]; Hetenyi, 
[8]; Pasternak [9]; Reissener [10]; Kerr [11]; Vlasov [12]. 

It can be seen that the foundation always has foundation 
mass in reality, so that the foundation mass have to effect on 
dynamic response of structure-foundation interaction in during 
vibration of its. But, one of the most important deficiencies of 
the above foundation models overlooks the influence of the 
foundation mass. Hence, a new foundation model called 
dynamic foundation model including elastic spring, shear 
layer, viscous damping and special consideration of the 
influence of a characteristic parameter of foundation mass had 
proposed by Pham [13]. The dynamic foundation model 
applied to analyze response of beam and plate structures 
subjected to moving load [14, 15] and the results show that the 
influence of foundation mass has effects significantly on 
dynamic response of structures. 

To continuously attention to effects of foundation mass on 
dynamic responses of structures, this study analyzes effects of 
the foundation mass on dynamic response of beam subjected 
to a moving vehicle. This foundation model includes the non-
uniform linear elastic springs, the uniform linear shear layer, 
viscous damping and special consideration of the influence of 
a characteristic parameter of foundation mass. The moving 
vehicle is assumed to be consisted of two nodal masses that 
are connected by means of a spring-damper components. By 
means of dynamic balance principle and finite element 
method, the equation of motion for the beam-vehicle-
foundation interaction element is derived. The governing 
equations of motion for the integrated system are obtained by 
assembling the stiffness, damping and mass matrices, and 
vectors of nodal loads of all elements, and solved by step-by-
step integration method procedure such as Newmark’s 
method. The accuracy of the algorithm is verified by 
comparing the numerical results with the other numerical 
results in the literature. Also, the effects of characteristic 
parameter of foundation mass on dynamic analysis of beam-
vehicle interaction are discussed. 

II. FORMULATION 

A. Model of beam-vehicle-foundation interaction 

Consider an Euler-Bernoulli beam resting on the dynamic 
foundation subjected to moving vehicles is shown in Fig.1.  
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Fig1. The beam subjected to moving vehicle on non-uniform foundation. 

The non-uniform foundation based on the dynamic 
foundation model [13], which fully describes dynamic 
characteristic parameters for behavior of foundation including 
the elastic stiffness idealized based on the linear elastic 

springs modulus 
Wk , the shear foundation modulus 

Sk , 

viscous damping c and the foundation mass F
 are 

respectively replaced by lumped mass m  at the top of the 

elastic spring connected between elastic layer and shear layer. 
The pressure-deflection relationship at the time t due to a 

pressure ( , , )q x y t  is determined based on dynamic balance 

principle, can be expressed mathematically as follows 

2
2

2

( , , )
( , , ) ( , , )

( , , )
( , , )


  




 



W

s

w x y t
q x y t k w x y t c

t

w x y t
m k w x y t

t

  (1) 

where, the lumped mass m  is given by 

                      fm     (2) 

in which   is an experimental parameter characterized the 

influence of foundation mass. 

B. Formulation of element matrices 

The beam modeled as uniform Euler-Bernoulli beam is 

assumed that the beam material is isotropic; the vibration 

amplitudes of beam are sufficiently small and the bond 

between the beam and the foundation is perfect. Each beam 

element has two nodes, each node having two degree of 

freedom including vertical displacement and rotation 

displacement.  

Based on the strain energy of the beam element, stiffness 

matrix of the beam element resting on non-uniform foundation 

including the effects of both bending deformation of the beam 

and non-uniform foundation is given by 

           
B W S

e e e e
K K K K   (3) 

where  
B

e
K  is the normal bending stiffness matrix;  

W

e
K  and 

 
S

e
K  are the non-uniform elastic stiffness matrix and the 

shear stiffness matrix, respectively, are given by 

     

     


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

W T

w W we

S T

s S se

k dx

k dx

K N N

K N N
   (4) 

 

 

The mass matrix of the beam element including the 

effects of the foundation mass of both the beam and 

foundation based on the kinetic energy of the beam element, 

can be expressed as 

      
b F

e e e
M M M    (5) 

where  
b

e
M  is the mass matrix of the beam element and 

 
F

e
M  is the mass matrix for the influence of the foundation 

mass, is also written as 

       
F T

w we
m dxM N N   (6) 

The viscous damping property of the foundation is 

considered to be the dashpots system and based on the 

dissipated energy of these disputes the damping matrix can be 

expressed as 

       
F T

w we
c dxC N N     (7) 

where  sN  and  wN  are the matrix of interpolation 

functions for displacements and rotation, respectively, studied 
in many research related to finite element method. 

C. The governing equation of motion 

The moving vehicle model is regarded as a two-node with 
one is associated with each of two concentrated masses. The 
stiffness and damping coefficients of the oscillator are denoted 

by 
vk  and 

vc , respectively. The mass of the vehicle and the 

mass of the wheel is denoted by 
vM  and mw, respectively. In 

addition, 
vz  and 

wz  denote the vertical displacements of two 

nodes measured from the static equilibrium position. At any 

time t , the position of the moving vehicle is mx vt  and the 

left end of the beam element in global coordinate (node thi ) is 

to be  /i mx Int x l l . Then, one can find the element number 

 Int / 1 th

mi x l , nodes thi  and  1
th

i , which the moving 

vehicle is applied to at any time t . Therefore,   can be 

rewritten in terms of the global instead of the local 

    th

mt x i l       (8) 

By assuming the no-jump condition for the moving 
vehicle, the contact force can be related to displacement of the 
contact force and its derivatives. Equations of motion of the 
moving vehicle can be written as follows 

 

w

w

0

0

0

       
       

       

       
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        

v v v v v

w w v v

v v v

v v c v w

M z c c z

m z c c z

k k z

k k z f M m g

   (9) 

where cf  is the contact force. 

Assuming that all information of the system at time t  is 

known and t  is a small time increment, the first row of Eq. 

(9) can be expanded in an incremental form at time t t  

[16] 

 , , , ,     v v t t v v t t v v t t vc t tM z c z k z q   (10) 
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with  

   
, , ,    vc t t v w t t v w t tq c z k z   (11) 

Based on Newmark’s method, average acceleration 

method ( 0.5  and 0.25  ), the displacement 
wz  and its 

derivatives at time t t  can be written as 
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with  

   
0 3
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   (13) 

and coefficients bi given by 
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Substituting Eq. (12) into incremental form of the second 
row of Eq. (9), the contact force fc in time t t  is 

determined by 

, , , , , ,        c t t w w t t c w t t c w t t c t t c tf m z c z k z p q    (15) 

in which 
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with 

 3 , 4 , 5 , ,,       vw v v w t v v t v t v v tb c k q c b z b z k z         (17) 

It assumes that there is no loss of contact between the tire 

and the upper surface of the beam, the displacement and 

acceleration of the wheel ( wz  and wz , respectively) equals to 

the deflection and acceleration at the contact position of 

vehicle and beam. Therefore, the differential equation of 

motion of the beam element resting on the non-uniform 

foundation subjected to the moving vehicle at time t can be 

expressed as 

           ,    e e e e e e i w c+ + = x vt fM u C u K u N    (18) 

where ,
  wN  is the value of interpolation function depended 

on the coordinate   corresponding with  the position of wheel 

on the beam element thi  at the time t ;   ix vt  is the Dirac 

delta function and i  denotes contact element between the 

beam and contact force. 

By assembling the stiffness, damping and mass matrices, 

and vectors of nodal loads of all elements corresponding 

degrees of freedom in the global coordinate, the governing 

equation of motion of the system beam-vehicles-foundation 

interaction in each time step is defined as follows 

              M U C U K U F             (19) 

where  M ,  C , and  K  are the overall mass, damping and 

stiffness matrices of the system, respectively;  U  and  F  is 

the nodal displacement vector and the external force vector of 
the system, respectively. It is used for studying the dynamic 
response of the beam-vehicle-foundation interaction and 
solved by means of the direct step-by-step integration method 
based on Newmark’s algorithm. 

III. NUMERICAL RESULTS 

A. Verified examples 

The first example analyzes free vibration of a simple 
support beam resting on a uniform linear foundation with-out 

effect of foundation mass. The dimensionless parameters 
1K  

and 
2K  representing the stiffness of linear elastic springs and 

shear layer of the foundation and the dimensionless natural 
frequency   are defined as follows [17] 

    
4 2

2

1 2 2
, ,


 


  W Sk L k L A

K K L
EI EIEI

 (20) 

in which   is natural circular frequency of the beam. The 

convergences of the lowest natural frequencies are compared 
with the results of Matsunaga [17], shown in Table 1. 

Table 1. The dimensionless natural frequencies  of the 
beam 

1K  
2K  Present Ref. [17] 

0 

1 

13.9577 13.9577 

10 14.3115 14.3115 

102 17.1703 17.1703 

103 34.5661 34.5661 

104 100.9694 100.9694 

105 316.5356 316.5356 

Table 2. The maximum vertical displacement at the midpoint 
of the beam 

1k  

(kN/m2) 
2k  

(kN/m2) 

Present 
(mm) 

SAP2000 
(mm) 

125 250 

500 

1000 

1500 

2000 

3.8586 3.8593 

250 2.3666 2.3674 

500 1.3830 1.3834 

750 1.0023 1.0026 

1000 0.7980 0.7982 
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Continuously, the maximum vertical displacement of a 

simply supported beam resting on non-uniform linear elastic 

foundation subjected to a vertical static point load at the 

midpoint of the beam is investigated. The beam has length 

20L m , Young’s modulus 210E Gpa , moment of inertia 

4 40.667 10I m , mass per unit volume 37800 /  kg m  

and section area  20.2A m . The point force acting on the 

beam has a value of 10P kN  and the non-uniform 

foundation composed of two sub-domains of equal length, the 

first (on the left side) with 
1k  and the second (on the right 

side) with 
2k , see in Fig. 1. The maximum of vertical 

displacement of the midpoint of the beam are compared with 

result obtained by SAP2000 software, shown in Table 2. 

In the next example is carried out to verify the present 
algorithm for a simply supported beam subjected to a moving 
vehicle. The following data are adopted the beam and the 
moving vehicle similar to Neves et al., 2012 [18]. The time 
history of vertical displacement of midpoint of the beam and 
body of the moving vehicle are plotted in Fig. 2. 
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Fig 2. Time history of displacement: (a) Vertical displacement at the midpoint 
of beam; (b) Vertical displacement of body. 

Through the above examples, the numerical results from 
the program based on the suggested formulation show quite 
good agreement with numerical results in the literature. 
Therefore, the program which will analyze the influence of 
many parameters on dynamic response of the beam-vehicle-
foundation interaction is reliable. 

 

 

 

 

B. Numerical investigation 

In this section, the physical and geometric properties of a 

simply supported  beam, vehicle and dynamic foundation 

analyzed the effects of foundation mass on dynamic response 

of beam-vehicle-foundation interaction are listed in Table 3. 

The characteristic parameter of elastic stiffness of non-

uniform foundation   is defined by ratio of elastic foundation 

stiffness of sub two (on the right) with elastic foundation 

stiffness of sub one (on the left), and the characteristic 

parameter of length of non-uniform foundation   is also 

defined by ratio of length of sub one (on the left) with length 

of sub two (on the right). 

Table 3. Properties of railway track, vehicle and dynamic 
foundation 

Item Notation Unit Value 

Beam    

Length L m 20 

Young’s modulus E Gpa 24 

Foundation mass  kg/m3 2500 

Cross sectional area A m2 0.3 

Second moment of area I m4 2.25x10-3 

Moving Vehicle    

Mass of car body Mv kg 5x103 

Spring stiffness kv N/m 1.5x106 

Dashpot coefficient cv Ns/m 1.5 x104 

Mass of axle mw kg 5x102 

Non-uniform foundation    

Linear stiffness kW N/m2 1.5x106 

Shear parameter kS N 5x104 

Viscous damping c Ns/m2 1.5x103 

Density of foundation f kg/m3 1800 

In the first investigation, the dynamic responses of the 
beam on the foundation subjected to a moving vehicle with 
various values of the characteristic parameter of non-uniform 
foundation are studied. The effects of characteristic 
parameters of elastic stiffness of non-uniform foundation on 
time history of vertical displacement of the midpoint of the 
beam have been plotted in Fig. 3 and 4. The influence of 
foundation mass on vertical displacements of the midpoint of 
the beam is plotted in Fig. 5. It can be seen that the 
characteristic parameter of the non-uniform foundation and 
foundation mass of the foundation effect significantly on 
dynamic behavior of the beam. It increases the time history of 
vertical displacements of the midpoint of the beam with 
decrease values of the parameters   and  , shown in Fig 3 

and Fig. 4. But, with an increase of values of the parameters of 
foundation mass also increase the time history of the vertical 
displacements of the midpoint of the beam, plotted in Fig. 5. 

(a) 

(b) 
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Fig 3. Time history of displacement with =0.5 and =0.5: (a) v=10 m/s, 

(b) v=25 m/s, (c) v=50 m/s, (d) v=75 m/s 
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Fig 4. Time history of displacement with =0.5 and =0.5: v=10 m/s, 

(b) v=25 m/s, (c) v=50 m/s, (d) v=75 m/s 
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Fig 5. Time history of displacement with =0.5 and =0.5: (a) v=10 m/s, (b) 

v=25 m/s, (c) v=50 m/s, (d) v=75 m/s 
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Fig 6. The effects of the parameter  on the DMFs of the beam: (a) =0, (b) 

=0.25, (c) =0.5, (d) =1 
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Fig 7. The effects of the parameter  on the DMFs of the beam: =0.5, (b) 

=0.75, (c) =1, (d) =2 

 

 

 

 

 

Fig 8. The effects of the parameter  and  on the DMFs of vertical 

displacement of the beam: (a) =0.3, (b) =0.6 
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Fig 9. The effects of the parameter  and  on the DMFs of vertical 

displacement of the beam: (a) =0.5, (b) =2 

To show more clear the influence of the characteristic 
parameters of the non-uniform foundation on dynamic 
analysis of the interaction between the beam and foundation 
subjected to a moving vehicle, the effects of the above 
parameters on dynamic magnification factor (DMF) are 
investigated for various values of the velocity of the moving 
vehicle, shown in Fig. 6 and Fig. 7. At the same time, the 
effects of the between parameters   or    and the parameters 

of foundation mass   for various values of the velocity of the 

moving vehicle on DMFs of the beam are also studied, shown 
in Fig. 8 and Fig. 9.  

It can be shown that the parameters of the non-uniform 
and the foundation mass affect significantly on the dynamic 
response of the beam, shown from Fig 6 to Fig. 9. In the range 
of low velocities, it increases clearly the DMFs of the beam 
with decrease of values of the characteristic parameters of 
elastic stiffness of the foundation. At the same time, in the 
range of high velocity, the effects of the foundation mass on 
the DMFs of vertical dis-placement of the beam are quite 
clear, and the comparisons show that the foundation mass is 
an increase the DMFs of the beam than the foundation model 
without the influence of foundation mass ( 0  ). 

IV. CONCLUSIONS 
In this paper, the dynamic analysis of the beam on the non-

uniform foundation subjected to a moving vehicle is 
investigated by means of finite element method. The non-
uniform foundation includes non-uniform linear elastic spring, 
shear layer, viscous damping and special consideration 
influence of foundation mass of it. The beam, vehicle and 
non-uniform foundation are regarded as an integrated system 
and the governing equation of motion of the system is derived 
based on dynamic balance principle and solved by step-by-
step integration method procedure. The accuracy of the 
numerical results is verified by comparing its numerical 
solutions with those of other available numerical results. The 
results show that the characteristic parameters of non-uniform 
and foundation mass effect significantly on dynamic response 
of the beam. A comparison shows that the foundation mass in 
the dynamic foundation model is more increasing dynamic 
behavior of the beam than others without the influence of 
foundation mass. The presented results can be employed to 
perform the parametric studies about various dynamic and 
structural properties of the structural-vehicle-foundation 
interaction model such as track-train-foundation, road-vehicle-

foundation and it also is useful for problems of practical 
design.  
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