
 
 

 

  

 

Dynamically Reconfigurable Softcore Processor of 

Fault-Tolerance Technique by Picoblaze Core 

 
1
R. Sivaranjani ,

2
G. Vinoth 

PG student, Assistant Professor 

Department of Electronics and Communication Engineering 

 DMI
 
College of engineering, Chennai-602013, India 

 
 

Abstract - In this paper, A new enhanced Lockstep scheme built 

using a pair of Micro blaze cores is proposed and implemented 

on Xilinx  Virtex-6 FPGA.Lockstep scheme allows to detect and 

eliminate its internal temporary configuration upsets without 

interrupting normal functioning. Faults are detected and 

eliminated using a configuration engine built  on the basis of the 

picoblaze core which, to avoid a single point of failure, is 

implemented as fault tolerant using triple modular redundancy. 

The new enhanced lockstep scheme requires significantly shorter 

error recovery time compared to conventional lockstep scheme 

and uses significantly smaller number of slices compared to 

known TMR based design. A soft-core processor can recover 

from configuration upsets through partial reconfiguration 

combined with roll-forward recovery. SEUs affecting logic which 

are significantly less likely than those affecting configuration are 

handled by check pointing and rollback. 

Keywords— Error recovery, fault injection, fault-tolerance, FPGA, 

lockstep, reconfigurable system, single-event upset (SEU),softcore 

processor 

 
1. INTRODUCTION 

 

In past a lockstep scheme using two hardcore Power 

PC processors embedded in Xilinx Virtex-6 Pro FPGA, which 

could be considered for application in soft core processors as 

well. However, this scheme is rather a handshake scheme than 

a lockstep one because, to perform consistency checks, the 

processors execute the same program but not simultaneously. 

As a result, the overall time overhead  is relatively large  ( 

besides context saving  and restoring, if needed), because  of  

the sequential execution of two identical tasks on two 

different processors, which might be prohibitively long in 

some real time applications. Moreover, using check pointing 

and rollback for context recovery results in an extra time 

overhead. Modern FPGAs, besides customary reconfigurable 

resources, offer the designers the possibilities of implementing 

programmable processors having features of Commercial Off-

The-Shelf (COTS) components .Soft-core processors use 

reconfigurable resources, so their number that can be actually 

implemented depends on the device size only. Xilinx FPGAs 

use SRAM-based technologies which are known to be very 

susceptible to radiation and electromagnetic noise .The major 

effects caused by them are known as Single-Event Upsets 

(SEUs) or soft errors, because only some logic state(s) of 

memory element(s) are changed but the circuit/device itself is 

not permanently damaged. 

                 In FPGAs, SEUs may directly corrupt computation 

results or induce changes to configuration memory; the latter 

can cause changes in the functionality and performance of the 

device. Due to their flexibility, FPGAs are attractive for 

mission-critical embedded applications, but their reliability 

could be insufficient unless some fault-tolerance techniques 

capable of mitigating soft errors are used. These techniques 

should allow for online error detection or/and correction 

during system operation, very fast fault location, quick 

recovery from temporary failures, and fast permanent fault 

repair through reconfiguration. Here, we are interested in 

designing and implementing a fault-tolerant (FT) soft-core 

processor using Virtex-6 FPGA. Therefore, one option to 

implement larger number of lockstep modules in a single 

FPGA is to employ soft-core processors that can use all 

available reconfigurable resources of the device. 

 

  

2.  PRELIMINARIES 

 

In this section, we will present some basic FPGA 

features that are essential to support fault tolerance in the 

designs proposed here, the fault and error model of SRAM 

FPGAs,and the survey of the fault-tolerance techniques 

commonly used in FPGA-based systems. 
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Fig. 1. MicroBlaze softcore processor structure 

 

2.1 MicroBlaze Softcore Processor Structure 

 

Besides hardcore embedded processors like 

PowerPC, that are hardwired in the die, FPGAs can also 

implement softcore processors offered by manufacturers, like 

MicroBlaze, PicoBlaze, and Nios, as well as those proposed 

by the open source community,like LEON3 and LEON4 . 

Softcore processors are Intellectual Property (IP) blocks 

written in hardware description languages (HDL) like VHDL 

or Verilog, to be implemented using reconfigurable resources 

of FPGAs. Fig. 1 shows a typical MicroBlaze processor 

system that consists of a 32-bit MicroBlaze core, the program 

memory BRAM with its data and instruction buses, and the 

Processor Local Bus (PLB) the central bus of the MicroBlaze 

core with some peripherals connected to it.Many aspects of 

the MicroBlaze can be user configured: cache size, pipeline 

depth (3-stage or 5-stage), embedded peripherals, memory 

management unit, and bus-interfaces can be customized. The 

area-optimized version of MicroBlaze, which uses a 3-stage 

pipeline, sacrifices clock-frequency for reduced logic-area. 

The performance-optimized version expands the execution-

pipeline to 5-stages, allowing top speeds of 210 MHz (*on 

Virtex-6 FPGA family.) Also, key processor instructions 

which are rarely used but more expensive to implement in 

hardware can be selectively added/removed (i.e. multiply, 

divide, and floating-point ops.) This customization enables a 

developer to make the appropriate design tradeoffs for a 

specific set of host hardware and application software 

requirements. 

 
Fig.2 MicroBlaze Processor Block Diagram 

3. BASE SYSTEM BUILDER 

The Base System Builder (BSB) automates basic 

hardware and software platform configuration tasks common 

to most processor designs. If you are targeting one of the 

supported embedded processor development boards available 

from Xilinx, or from one of our partners, the BSB lets you 

pick from the peripherals available on that board, 

automatically match the FPGA pin out to the board, and create 

a completed platform and test application ready to download 

and run on the board. If you are developing a design for a 

custom board, the BSB lets you select and interconnect one of 

the available processor cores (MicroBlaz) or PowerPC, 

depending on your selected target FPGA device) with a 

variety of compatible, commonly used peripheral cores from 

the library. This gives you a hardware platform to use as a 

starting point from which you can add more processors and 

peripherals if needed, including custom peripherals, using the 

tools provided in XPS. For a PLB-based design, you can 

create a single or dual processor system, which can use either 

MicroBlaze or PowerPC (405 or 440) processors. In the Board 

and System Selection page of the Base System Builder, select 

the type of system you want to create. Review the system 

information that displays when you select a system. The BSB 

creates a single or dual processor system. You can configure 

the processor, peripheral set, and some major configuration 

parameters for the peripherals in the next window of the 

wizard. 
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Fig 3 Processor selection 

 

4. .FAULT AND ERROR UPSETS 

We assume a commonly used fault model of SRAM 

FPGAs,which includes temporary faults (SEUs) affecting 

configuration memory or user memory implementing, e.g., 

flip flops and registers. Single SEUs will be of our primary 

concern here, because they are the most likely to occur. 

Nevertheless, unlike most authors, we will also consider 

permanent faults affecting configuration memory. 

SEUs in configuration memory may result in 

modifications of the functionalities of the application design 

the FPGA implements. For a given design, all configuration 

memory bits can be classified as being sensitive (whose upset 

induces errors) and non-sensitive. This is because among 

numerous configuration memory bits only some are actually 

utilized by the user’s design, hence SEUs affecting the 

configuration bits that are not utilized by a specific design will 

not affect the behavior of that design. Although of temporary 

nature, SEUs may have permanent effects until the device is 

reconfigured, e.g., by readback or scrubbing [21]. In addition 

to configuration sensitivity, the sensitive bits can be further 

categorized into two following categories : 

. Nonpersistent bits are those configuration bits which, when 

upset, may induce nonpersistent functional errors which 

disappear once the device is reconfigured, so that the design 

can return to normal operation. The nonpersistent bits 

generally involve purely combinational circuitry of the design. 

. Persistent bits are those configuration bits which, when 

upset, induce persistent functional errors, which do not 

disappear even after the device is reconfigured. The persistent 

bits generally involve any part of the design that contains the 

sequential circuitry or BRAM. The frame-based 

reconfiguration followed by the internal reset could eliminate 

persistent errors but, unfortunately, it cannot deal with 

corrupted data written to the BRAM. One feasible solution for 

the latter problem is the following: 

- to reconfigure the whole module (module-based 

reconfiguration) to eliminate configuration errors and re 

establish the start up state of the BRAM; then 

- to perform an internal reset of the registers and flip flops to 

the initial correct state; and finally, 

- to perform the context recovery. 

 

4.2 Error Handling Techniques in FPGAs 

 

Configuration data of SRAM FPGAs, containing 

millions of configuration bits, are particularly vulnerable to 

SEUs. They can be protected against errors by various 

standard means provided by FPGAs’ manufacturers, like 

configuration readback, configuration scrubbing, and error 

detecting or correcting codes [8], [21]. These techniques can 

be applied continuously in the background of a user design. 

FRAME_ ECC is the Virtex-5 and -6 primitive using single-

error correcting/ double-error-detecting (SEC/DED) Hamming 

error correcting code (ECC) which during configuration 

readback allows to correct single errors and/or detect double 

errors in the configuration frame data. 

 

4.3 Error Recovery Techniques 

 

Once an error is detected, the next step is error 

recovery, i.e., the process of removing errors from the system 

and bringing it back to the error-free state. The processor 

context is the set of information needed to define uniquely the 

state of the processor at a given moment. It could include the 

states of the processor registers, the cache, the memory, etc. 

Saving and restoring all relevant values is essential 

for effective processor context switching and error recovery. 

Several error recovery schemes have been proposed ,which 

can be classified as backward and forward.The backward error 

recovery techniques, which are based on time redundancy, 

rely on saving the correct processor context and restoring it 

once the errors are removed, so that the processor could 

resume correct functioning at the last saved point 

(checkpoint). Among various context recovery techniques 

differing in the moment of saving and restoring the context, 

the most often used is rollback recovery using checkpoints. 

The major drawback of rollback recovery using checkpoints is 

the time overhead (regular saving of the processor context 

with checkpointing frequency growing with the error rate, 

computations lost from the last checkpoint followed by 

restoring of the processor context). Fig. 5 shows the scheme of 

checkpointing and rollback applied for basic lockstep scheme 

recovery. Because it is not possible to identify the faulty 

processor without extra diagnosing support, the error recovery 

in FPGA designs can be achieved through reconfiguration of 

both processor cores which, however, can be time consuming.  

The latter problems are alleviated in roll-forward 

error recovery which does not need regular context saving. 

When an error occurs, it is corrected by copying the correct 
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state of the processor from a fault-free mirror processor, 

provided that there are means to identify it. Because a lockstep 

scheme using roll forward rather than rollback seems to offer 

better performance without significant increase of hardware 

resources, we will consider it in the designs proposed here. 

 

5. CONCLUSION AND FUTURE WORK 

 

In this paper, we have proposed a new architecture of 

a fault-tolerant reconfigurable system which can be 

implemented on any SRAM-based FPGA with integrated 

softcore processors. An Enhanced Lockstep scheme built 

using a pair of MicroBlaze cores was proposed and 

implemented on Xilinx Virtex-5 FPGA. Unlike the basic 

lockstep scheme, ours allows to identify the faulty core using 

a Configuration Engine which allows to recover from single-

event upsets through partial reconfiguration combined with 

roll-forward recovery technique. As a result, the problem of 

fault latency is alleviated, because faults are detected 

immediately, once they cause an error. The Configuration 

Engine was built using PicoBlaze cores and, to avoid a single 

point of failure, was implemented as fault-tolerant using triple 

modular redundancy (TMR) 

Future work would include developing the 

methodology which would facilitate the creation of tiling 

configurations using Xilinx Design Language (XDL) 

representation of the circuit accompanied by RapidSmith 

taking into account the sensitivity and persistence of errors 

caused by faults of the configuration bits inside the 

permanently defected zone. We would like also to consider 

fault injection in user’s logic and BRAM to validate the 

significant advantages of our system in dealing with SEUs 

directly affecting logic. 
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