

Dynamically Reconfigurable Softcore Processor of

Fault-Tolerance Technique by Picoblaze Core

1
R. Sivaranjani ,

2
G. Vinoth

PG student, Assistant Professor

Department of Electronics and Communication Engineering

 DMI

College of engineering, Chennai-602013, India

Abstract - In this paper, A new enhanced Lockstep scheme built

using a pair of Micro blaze cores is proposed and implemented

on Xilinx Virtex-6 FPGA.Lockstep scheme allows to detect and

eliminate its internal temporary configuration upsets without

interrupting normal functioning. Faults are detected and

eliminated using a configuration engine built on the basis of the

picoblaze core which, to avoid a single point of failure, is

implemented as fault tolerant using triple modular redundancy.

The new enhanced lockstep scheme requires significantly shorter

error recovery time compared to conventional lockstep scheme

and uses significantly smaller number of slices compared to

known TMR based design. A soft-core processor can recover

from configuration upsets through partial reconfiguration

combined with roll-forward recovery. SEUs affecting logic which

are significantly less likely than those affecting configuration are

handled by check pointing and rollback.

Keywords— Error recovery, fault injection, fault-tolerance, FPGA,

lockstep, reconfigurable system, single-event upset (SEU),softcore

processor

1. INTRODUCTION

In past a lockstep scheme using two hardcore Power

PC processors embedded in Xilinx Virtex-6 Pro FPGA, which

could be considered for application in soft core processors as

well. However, this scheme is rather a handshake scheme than

a lockstep one because, to perform consistency checks, the

processors execute the same program but not simultaneously.

As a result, the overall time overhead is relatively large (

besides context saving and restoring, if needed), because of

the sequential execution of two identical tasks on two

different processors, which might be prohibitively long in

some real time applications. Moreover, using check pointing

and rollback for context recovery results in an extra time

overhead. Modern FPGAs, besides customary reconfigurable

resources, offer the designers the possibilities of implementing

programmable processors having features of Commercial Off-

The-Shelf (COTS) components .Soft-core processors use

reconfigurable resources, so their number that can be actually

implemented depends on the device size only. Xilinx FPGAs

use SRAM-based technologies which are known to be very

susceptible to radiation and electromagnetic noise .The major

effects caused by them are known as Single-Event Upsets

(SEUs) or soft errors, because only some logic state(s) of

memory element(s) are changed but the circuit/device itself is

not permanently damaged.

 In FPGAs, SEUs may directly corrupt computation

results or induce changes to configuration memory; the latter

can cause changes in the functionality and performance of the

device. Due to their flexibility, FPGAs are attractive for

mission-critical embedded applications, but their reliability

could be insufficient unless some fault-tolerance techniques

capable of mitigating soft errors are used. These techniques

should allow for online error detection or/and correction

during system operation, very fast fault location, quick

recovery from temporary failures, and fast permanent fault

repair through reconfiguration. Here, we are interested in

designing and implementing a fault-tolerant (FT) soft-core

processor using Virtex-6 FPGA. Therefore, one option to

implement larger number of lockstep modules in a single

FPGA is to employ soft-core processors that can use all

available reconfigurable resources of the device.

2. PRELIMINARIES

In this section, we will present some basic FPGA

features that are essential to support fault tolerance in the

designs proposed here, the fault and error model of SRAM

FPGAs,and the survey of the fault-tolerance techniques

commonly used in FPGA-based systems.

630

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20378

Fig. 1. MicroBlaze softcore processor structure

2.1 MicroBlaze Softcore Processor Structure

Besides hardcore embedded processors like

PowerPC, that are hardwired in the die, FPGAs can also

implement softcore processors offered by manufacturers, like

MicroBlaze, PicoBlaze, and Nios, as well as those proposed

by the open source community,like LEON3 and LEON4 .

Softcore processors are Intellectual Property (IP) blocks

written in hardware description languages (HDL) like VHDL

or Verilog, to be implemented using reconfigurable resources

of FPGAs. Fig. 1 shows a typical MicroBlaze processor

system that consists of a 32-bit MicroBlaze core, the program

memory BRAM with its data and instruction buses, and the

Processor Local Bus (PLB) the central bus of the MicroBlaze

core with some peripherals connected to it.Many aspects of

the MicroBlaze can be user configured: cache size, pipeline

depth (3-stage or 5-stage), embedded peripherals, memory

management unit, and bus-interfaces can be customized. The

area-optimized version of MicroBlaze, which uses a 3-stage

pipeline, sacrifices clock-frequency for reduced logic-area.

The performance-optimized version expands the execution-

pipeline to 5-stages, allowing top speeds of 210 MHz (*on

Virtex-6 FPGA family.) Also, key processor instructions

which are rarely used but more expensive to implement in

hardware can be selectively added/removed (i.e. multiply,

divide, and floating-point ops.) This customization enables a

developer to make the appropriate design tradeoffs for a

specific set of host hardware and application software

requirements.

Fig.2 MicroBlaze Processor Block Diagram

3. BASE SYSTEM BUILDER

The Base System Builder (BSB) automates basic

hardware and software platform configuration tasks common

to most processor designs. If you are targeting one of the

supported embedded processor development boards available

from Xilinx, or from one of our partners, the BSB lets you

pick from the peripherals available on that board,

automatically match the FPGA pin out to the board, and create

a completed platform and test application ready to download

and run on the board. If you are developing a design for a

custom board, the BSB lets you select and interconnect one of

the available processor cores (MicroBlaz) or PowerPC,

depending on your selected target FPGA device) with a

variety of compatible, commonly used peripheral cores from

the library. This gives you a hardware platform to use as a

starting point from which you can add more processors and

peripherals if needed, including custom peripherals, using the

tools provided in XPS. For a PLB-based design, you can

create a single or dual processor system, which can use either

MicroBlaze or PowerPC (405 or 440) processors. In the Board

and System Selection page of the Base System Builder, select

the type of system you want to create. Review the system

information that displays when you select a system. The BSB

creates a single or dual processor system. You can configure

the processor, peripheral set, and some major configuration

parameters for the peripherals in the next window of the

wizard.

631

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20378

Fig 3 Processor selection

4. .FAULT AND ERROR UPSETS

We assume a commonly used fault model of SRAM

FPGAs,which includes temporary faults (SEUs) affecting

configuration memory or user memory implementing, e.g.,

flip flops and registers. Single SEUs will be of our primary

concern here, because they are the most likely to occur.

Nevertheless, unlike most authors, we will also consider

permanent faults affecting configuration memory.

SEUs in configuration memory may result in

modifications of the functionalities of the application design

the FPGA implements. For a given design, all configuration

memory bits can be classified as being sensitive (whose upset

induces errors) and non-sensitive. This is because among

numerous configuration memory bits only some are actually

utilized by the user’s design, hence SEUs affecting the

configuration bits that are not utilized by a specific design will

not affect the behavior of that design. Although of temporary

nature, SEUs may have permanent effects until the device is

reconfigured, e.g., by readback or scrubbing [21]. In addition

to configuration sensitivity, the sensitive bits can be further

categorized into two following categories :

. Nonpersistent bits are those configuration bits which, when

upset, may induce nonpersistent functional errors which

disappear once the device is reconfigured, so that the design

can return to normal operation. The nonpersistent bits

generally involve purely combinational circuitry of the design.

. Persistent bits are those configuration bits which, when

upset, induce persistent functional errors, which do not

disappear even after the device is reconfigured. The persistent

bits generally involve any part of the design that contains the

sequential circuitry or BRAM. The frame-based

reconfiguration followed by the internal reset could eliminate

persistent errors but, unfortunately, it cannot deal with

corrupted data written to the BRAM. One feasible solution for

the latter problem is the following:

- to reconfigure the whole module (module-based

reconfiguration) to eliminate configuration errors and re

establish the start up state of the BRAM; then

- to perform an internal reset of the registers and flip flops to

the initial correct state; and finally,

- to perform the context recovery.

4.2 Error Handling Techniques in FPGAs

Configuration data of SRAM FPGAs, containing

millions of configuration bits, are particularly vulnerable to

SEUs. They can be protected against errors by various

standard means provided by FPGAs’ manufacturers, like

configuration readback, configuration scrubbing, and error

detecting or correcting codes [8], [21]. These techniques can

be applied continuously in the background of a user design.

FRAME_ ECC is the Virtex-5 and -6 primitive using single-

error correcting/ double-error-detecting (SEC/DED) Hamming

error correcting code (ECC) which during configuration

readback allows to correct single errors and/or detect double

errors in the configuration frame data.

4.3 Error Recovery Techniques

Once an error is detected, the next step is error

recovery, i.e., the process of removing errors from the system

and bringing it back to the error-free state. The processor

context is the set of information needed to define uniquely the

state of the processor at a given moment. It could include the

states of the processor registers, the cache, the memory, etc.

Saving and restoring all relevant values is essential

for effective processor context switching and error recovery.

Several error recovery schemes have been proposed ,which

can be classified as backward and forward.The backward error

recovery techniques, which are based on time redundancy,

rely on saving the correct processor context and restoring it

once the errors are removed, so that the processor could

resume correct functioning at the last saved point

(checkpoint). Among various context recovery techniques

differing in the moment of saving and restoring the context,

the most often used is rollback recovery using checkpoints.

The major drawback of rollback recovery using checkpoints is

the time overhead (regular saving of the processor context

with checkpointing frequency growing with the error rate,

computations lost from the last checkpoint followed by

restoring of the processor context). Fig. 5 shows the scheme of

checkpointing and rollback applied for basic lockstep scheme

recovery. Because it is not possible to identify the faulty

processor without extra diagnosing support, the error recovery

in FPGA designs can be achieved through reconfiguration of

both processor cores which, however, can be time consuming.

The latter problems are alleviated in roll-forward

error recovery which does not need regular context saving.

When an error occurs, it is corrected by copying the correct

632

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20378

state of the processor from a fault-free mirror processor,

provided that there are means to identify it. Because a lockstep

scheme using roll forward rather than rollback seems to offer

better performance without significant increase of hardware

resources, we will consider it in the designs proposed here.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new architecture of

a fault-tolerant reconfigurable system which can be

implemented on any SRAM-based FPGA with integrated

softcore processors. An Enhanced Lockstep scheme built

using a pair of MicroBlaze cores was proposed and

implemented on Xilinx Virtex-5 FPGA. Unlike the basic

lockstep scheme, ours allows to identify the faulty core using

a Configuration Engine which allows to recover from single-

event upsets through partial reconfiguration combined with

roll-forward recovery technique. As a result, the problem of

fault latency is alleviated, because faults are detected

immediately, once they cause an error. The Configuration

Engine was built using PicoBlaze cores and, to avoid a single

point of failure, was implemented as fault-tolerant using triple

modular redundancy (TMR)

Future work would include developing the

methodology which would facilitate the creation of tiling

configurations using Xilinx Design Language (XDL)

representation of the circuit accompanied by RapidSmith

taking into account the sensitivity and persistence of errors

caused by faults of the configuration bits inside the

permanently defected zone. We would like also to consider

fault injection in user’s logic and BRAM to validate the

significant advantages of our system in dealing with SEUs

directly affecting logic.

6. REFERENCES

[1]. Xilinx, Inc., “Single-Event Upset Mitigation Selection Guide,”- Appl.
Note XAPP987 (v1.0),

http://www.xilinx.com/support/documentation/application_notes/xapp9

87.pdf, Mar. 2008.

[2]. Xilinx,Inc.,“Virtex-6 FPGA configuration user
guide”UG360(v3.6)April18,2013.www.xilinx.com/support/documentati

on/user_guide.

[3]. Xilinx,Inc., “MicroBlaze Processor Reference Guide” Embedded

Development Kit EDK 13.2, UG081 (v13.2).

[4]. D.K. Pradhan and N.H. Vaidya, “Roll-Forward Checkpointing Scheme:

A Novel Fault-Tolerant Architecture,” IEEE Trans. Computers, vol. 43,

no. 10, pp. 1163-1174, Oct. 1994.

[5] H.-M. Pham, S. Pillement, and D. Demigny, “A Fault-Tolerant Layer

for Dynamically Reconfigurable Multi-Processor Systemon- Chip,”
Proc. Int’l Conf. ReConFigurable Computing and FPGAs, pp. 284-289,

Dec. 2009.

633

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20378

