ISSN: 2278-0181 ## Earthquake Resistant Building and Disaster Management Ilackiya. S, II nd Year Civil Engineering. Ck College Of Engineering & Technology JayaramNagar, Chellangkuppam, Cuddalore – 607003. | EARTHQUAKE: | | | Isolation | |---|--|-------|---| | | Earthquake occurs when to tectonic plates move suddenly against each other. | | Light weight material | | □ Earthquake is also known as temblors. □ Waves spread from the epicenter, the point | | | Bands | | | on the surface above the hypo centre. During earthquake rock suddenly shift | | Others | | | from their position and fracture occur on the earth surface. | BASE | ISOLATION | | | Ground shaking from earthquake can collapse buildings, bridges, phone services etc., | | | | TECHN | HOLIES TO DESIST | | Introduce flexibility to the structure. | | EART | NIQUES TO RESIST
HQUAKE | | Building is rested on flexible pads | | | Active and passive system | | (base isolators) | | | Shear walls | П | When earthquake strikes the building does | | | Bracing | | not moves | | | Dampers | | It is suitable for hard soil only | | | Rollers | | In India base isolation technique was first demonstrated after 1993 killari earthquake. | | Ш | Koners | | demonstrated after 1993 kman cartiquake. | | | | SEISM | IIC DAMPERS | | | | TYPES | OF SEISMIC DAMPERS | | | | | Viscous dampers (energy is absorbed by silicone-based fluid passing between piston cylinder arrangement). | **NCEASE-2015 Conference Proceedings** | ☐ Friction dampers (energy is absorbed by surfaces with friction between them rubbing against each other). | ☐ It is to protect and improve the lives of the poor, especially in seismic and temperature region. | |--|--| | ☐ Yielding dampers (energy is absorbed by metallic components that yield). | ☐ It is simple load bearing design. | | ☐ Viscoelastic dampers (energy is absorbed by utilizing the controlled shearing of solids). | Made with locally fabricated
compression moles and manually operated
form jacks. | | ☐ Immediate steps must be taken to preserve our environment for our future generation. | BANDS | | SHEAR WALL | ☐ Strong column, weak beam | | □ Vertically oriented wide beams □ It carries seismic loads down to the bottom of foundation □ Provides large strength and stiffness to buildings. □ Thickness generally varies from 150mm to 400mm in high rise | Horizontal band necessary through the masonry(a building with no horizontal linet band collapse of roof and walls). Latur earthquake incident(a building with horizontal linet band in killari village: no damage). | | buildings. | KEEPING BUILDING UP-RIGHT | | "AVOID SOFT STOREY- CONTINUE WALLS
IN GROUND STOREY"
LIGHT WEIGHT MATERIAL | ☐ When the quakes strikes the system dissipates energy in the building cores and exteriors. | | ☐ The group called paksbab is to find the solution for all problems. | □ The frames are free to rock up and down within fittings fixed at their bases. □ Recently discovered technique of japan | | | - recently discovered technique of Japan | | ☐ It has found to be survived even in extreme earthquakes. QUALITY CONTROL | Is 13828, 1993, indian standard guidelines for improving earthquake resistance of low strength masonry buildings Is 13920, 1993, indian standard code of practice for ductile detailing of reinforced | |--|--| | Regular testing of construction material at
qualified laboratories. | concrete structures subjected to seism forces | | ☐ For example, testing of bricks. | CONCLUSION | | □ Period training of workmen at proffosional training house. □ Onsite evaluation of the technical work. | □ We civil engineers are here only to provide safety to public to lead their life happily. □Let us work together to build a cultu | | IS-CODES | | | ☐ Is 1893 (part i), 2002, indian standard criteria for earthquake resistant design of structures (5 th revision) | | | ☐ Is 4326, 1993, indian standard code of practice for earthquake resistant design and construction of buildings (2 nd revision) | | | ☐ Is 13827, 1993, indian standard guidelines for improving earthquake resistance of earthen buildings | |