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Abstract—Particle Swarm Optimization (PSO) is 

characterized as a stochastic optimization algorithm that is based 

on the behaviour of swarm of birds searching for food. PSO is a 

very powerful tool for obtaining the optimal solution for complex 

problems. The algorithm may be modified by varying the various 

parameters involved and hence new variants of PSO may be 

obtained that improve the rate of convergence and the diversity 

of the solutions. In this paper, the basic PSO and the Quantum 

behaved PSO are compared with the variations of inertia factor 

and constriction factor applied on the Sphere function and 

Rosenbrock function. 
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I.  INTRODUCTION 

Optimization techniques, the techniques to find the best 
solution for problems, are generally of two types – 
deterministic and stochastic. Most of the real world problems 
are stochastic in nature and hence require respective techniques 
for solution. The stochastic techniques often result in huge 
computational efforts and hence may fail as the complexity of 
the problem increases. To deal with such complex problems, 
bio-inspired stochastic algorithms have been developed and 
have gained importance because of their computational 
efficiency. Population based techniques are the meta-heuristic 
iterative approaches that involve selecting appropriate initial 
population and operators to produce new set of solutions. PSO 
algorithm, introduced by Kennedy and Eberhart [1], is based 
on the simulation of the social behaviour of birds. The 
algorithm simulates the graceful and unpredictable 
choreography of swarm of birds. Each individual within the 
swarm is represented by a vector in the multidimensional 
search space. This position vector is assigned another vector, 
called the velocity vector, which determines the next 
movement of the particle. Each particle updates its velocity 
based on its current velocity, the individual best position and 
the global best position explored so far. It has been observed to 
have good convergence rate and has been applied to many real 
world optimization problems. PSO seems to have much in 
common with the Evolutionary Algorithms, however, it differs 
from these approaches because of the fact that there is no 
criterion for selecting the population and the population 
remains the same throughout the iterative procedure. Each 
particle in the population is attracted to it previous best position 
and to the global best position attained by the swarm.  

One problem with the PSO is that it may  fall into the trap 
of local optima in many optimization problems, since the 
particles may come close to their previous best and the global 

best thereby decreasing their dissimilarities. This results in 
premature convergence, in which case the population needs to 
be re-initialized to obtain the diversified solutions and hence 
search for the global optimal solution.  

In this paper, basic PSO approach and the Quantum PSO 
are being compared with emphasis on the Inertia factor and the 
Constriction Factor. These variants are being applied on the 
benchmark problems, the Sphere function and the Rosenbrock 
function to study the convergence of these techniques.  

II. BASIC PARTICLE SWARM OPTIMIZATION 

PSO remembers both the best position found by all the 
particles and those obtained by each particle in the search 
process. For a search problem in an n-dimensional space, a 
particle represents a potential solution. The velocity vij and the 
position xij of the jth dimension of the ith particle are updated 
according to equations  

vij(t+1)=w.vij(t)+c1.rand1ij.(pbestij(t)-xij(t)) 
+c2.rand2ij.(gbestij(t)-xij(t))   (1) 

xij(t+1)=xij(t)+vij(t+1)     (2) 

where i=1,2,... is the particle's index and Xi=(xi1,xi2,…,xin) is 
the position of the ith particle, Vi=(vi1,vi2,...,vin) is the velocity of 
the ith particle. The pbesti=(pbesti1,pbesti2,...,pbestin) is the 
previous best yielding the best fitness value for the ith particle 
and  gbest=(gbest1,gbest2,...,gbestn) is the global best particle 
found by all the particles so far. The inertia factor w has been 
proposed by Shi and Eberhart [2], rand1ij and rand2ij are two 
random numbers independently generated within the range of 
[0,1], c1 and c2 are two learning factors which control the 
influence of the social and cognitive components and t=1,2,... 
represents the iterations.  

III. QUANTUM PARTICLE SWARM OPTIMIZATION 
In QPSO, the Contraction-Expansion (CE) coefficient α is 

the most important algorithmic parameter that requires to be 
adjusted to balance the local and global search of the algorithm 
during the search process. This work provides an analysis of 
the impact of the CE coefficient on the behaviour of the 
particle in both types of the QPSO algorithms and discusses 
how to select its value for practical usage. Sun, Lai and Wu [3] 
has discussed both the basic and quantum perspectives of PSO. 

A. Procedure of QPSO 

The procedure of QPSO is similar to that of the PSO 
algorithm, except that it has different evolution equations In the 
QPSO algorithm, there is no velocity vector for each particle, 
and the position of the particle updates directly according to the 
equations 
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Xi,n+1
j=pi,n

j±α| Xi,n
j - pi,n

j |ln(1/ ui,n+1
j )|   (3) 

or  

Xi,n+1
j = pi,n

j±α| Xi,n
j - gi,n

j |ln(1/ ui,n+1
j )|   (4) 

where pi,n
j is the jth component of the local focus pi,n  of 

particle i at the nth iteration, ui,n+1
j is a sequence of random 

number uniformly distributed on (0,1).   

IV. INERTIA FACTOR AND CONSTRICTION FACTOR 

A. PSO with Inertia Factor (PSO-In) 

Inertia weight maintains a balance between exploring the 
search space and exploiting the solutions. The Inertia weight 
determines the contribution of the particle's previous velocity 
to the current iteration. Shi and Eberhart [2] established that a 
large inertia weight would facilitate the global search while 
small inertia weight would facilitate the local search. However, 
later on, many researchers studied the dynamic inertia weight 
to improve the convergence of PSO. Eberhart and Shi [4] gave 
a random inertia weight strategy while Xin, Chen and Hai [5] 
proposed the linearly decreasing strategy to enhance the 
efficiency and performance of PSO. In this paper, the linearly 
decreasing inertia weight has been considered in which the 
weight is computed by the equation: 

w=wmax+((wmax-wmin)/maxiter)× iter               (5) 

where wmax and wmin are the maximum and minimum values 
of the inertia weight that are pre-decided, iter represents the 
number of the current iteration and maxiter represents the 
maximum number of iterations. 

B. PSO with Constriction Factor (PSO-Co) 

Many researchers have indicated that the PSO often 
converges significantly faster to the global optimum but has 
difficulties in premature convergence, performance and 
diversity loss in the optimization process. In the absence of any 
restriction of the maximum velocity of the particles, 
researchers observed that they started oscillating around the 
optimal solution and the procedure would not reduce the 
velocity so as to search minutely in the limited search space for 
the global optimal. Clerc [6] suggested the use of properly 
defined constriction factor to ensure early convergence of the 
PSO.  The velocity using the PSO with the constriction factor 
K is given by:  

vij(t+1)=K[vij(t)+c1.rand1ij.(pbestij(t)-xij(t)) 
+c2.rand2ij.(gbestij(t)-xij(t))]   (6) 

K=2/(|2-φ-√( φ2-4φ)|), where φ =c1+c2, φ >4  (7) 

The convergence characteristic of the system is controlled 
by φ that has to be greater than 4. Generally, when the 
constriction factor is used, c1 and c2 are both set as 2.05 and 
thus φ=4.1. Thus the constriction factor is evaluated to 0.729. 

V. BENCHMARK PROBLEMS 

The benchmark problems considered in this paper are given 
by equations (8) and (9).  

f(x1,x2,...,xn) = x1
2+x2

2+...+xn
2    (8) 

f(x1,x2,...,xn) = ∑(100.(xi+1-xi
2)2+(xi-1)2)      (9) 

The Sphere function is strongly convex and unimodal 
function whereas the Rosenbrock function is a non-convex 
function and have been widely studied as benchmark problems 
in the theory of evolutionary algorithms.  

A. Parameters used  

Population Size (M)    20 

Maximum Number of Iterations  1000 

Search Space    [-100,100] 

Acceleration Coefficients (c1 and c2) 2.0 (For PSO and 
      PSO-In) 

Acceleration Coefficients (c1 and c2) 2.05 (For PSO-
      Co) 

During initialization, the current position vector for all the 
particles are uniformly distributed within the search domain 
and the initial best position of the particle is set to its initial 
current position.  The fitness value corresponding to each 
particle is computed followed by the identification of the 
global best positions. In case of PSO-In, the inertia weight 'w' 
should be computed as according to decreasing linearly from 
0.9 and 0.4 during the iterative procedure.   

B. Iterative Procedure  

The procedure of basic PSO, PSO-In and PSO-Co was 
executed and 50 cases of the final fitness values for each 
version of the PSO were obtained. The final fitness value for 
each run of a PSO algorithm was obtained after 1000 iterations 
of the search process. The average of the 50 best fitness values 
is known as the mean best fitness value. The standard deviation 
of the 50 best fitness values is computed for further 
comparative analysis. The quality of the solution or the fitness 
value obtained is only one of the aspects that reflect the 
performance of the algorithms. There are other important 
factors that may be employed evaluate the algorithms, 
including the convergence speed of the fitness values. To trace 
the convergence history of the algorithms, the fitness values at 
each iteration over 50 runs are averaged and plotted. It is 
observed that the basic PSO generated poor results even though 
the Sphere function is a unimodal function whereas PSO-In 
and PSO-Co generated better results. In particular, the mean 
best fitness value obtained through PSO-Co is 4.6526×10-8 that 
is extremely close to the optimal solution. Similarly, the 
solution obtained through the PSO-Co for the Rosenbrock 
function is extremely close to the optimal solution.  

In the similar manner, with the same parameter values and 
α=0.75, the procedure of QPSO, QPSO-In and QPSO-Co was 
executed and 50 values of the fitness values were obtained. The 
graphs of the mean values of the 20 particles of the Sphere 
function using basic PSO are plotted in Fig. 1-Fig. 3 and those 
using QPSO are plotted in Fig. 4-Fig. 6. It was observed that 
the mean best fitness value obtained for Sphere function is 
4.9667×10-37.The similar graphs of Rosenbrock function are 
plotted in Fig. 7-Fig. 9 and Fig. 10-Fig. 12 respectively. The 
final comparison of the mean values, the standard deviation 
and the global best of all the three variants for both the Sphere 
function and Rosenbrock function are given in Table I and 
Table II.  
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VI. CONCLUSION 

From Table I and Table II, it is easily concluded that the 
performance of Quantum behaved PSO is much better than the 
basic PSO because of its characteristic of enhancing the global 
search ability of the particles. Furthermore, while considering 
the Constriction Factor, the convergence and the rate of 
convergence are further improved by a great extent, 
establishing the significance of both the Quantum behaved 
PSO and the Constriction Factor while solving the optimization 
problem for the real world problems. PSO is a potential 
research topic and has room for considerable amount of 
modifications and hybridizations. 
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FIG. 1 – Plot of pbest for Sphere function using basic PSO 

 

 
FIG. 2 – Plot of pbest for Sphere function using PSO-In 

 

 
FIG. 3 – Plot of pbest for Sphere function using PSO-Co 
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FIG. 4 – Plot of pbest for Sphere function using QPSO 

 

 
FIG. 5 – Plot of pbest for Sphere function using QPSO-In 

 

 
FIG. 6 – Plot of pbest for Sphere function using QPSO-Co 

 

 
FIG. 7 – Plot of pbest for Rosenbrock function using basic PSO 
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FIG. 8 – Plot of pbest for Rosenbrock function using basic PSO-In 

 

 
FIG. 9 – Plot of pbest for Rosenbrock function using basic PSO-Co 

 

 
FIG. 10 – Plot of pbest for Rosenbrock function using QPSO 

 

 
FIG. 11 – Plot of pbest for Rosenbrock function using QPSO-In 
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FIG. 11 – Plot of pbest for Rosenbrock function using QPSO-Co 

 

 
TABLE 3: Mean and Standard Deviation of the Best Fitness Values using basic PSO and QPSO for Sphere Function 

  PSO   Quantum PSO   

  Mean 
Standard 
Deviation Global Best value Mean 

Standard 
Deviation Global Best value 

BasicPSO 1.3913E+04 2.6379E+03 1.6231E+04 3.3150E-01 3.0730E-01 5.0300E-02 

PSO In 4.4914E-07 7.9325E-07 9.1108E-08 205397E-14 8.2150E-014 2.8960E-14 

PSO Co 4.6526E-08 1.0754E-07 3.0781E-10 4.9667E-37 1.7747E-36 3.9713E-37 

 

 
TABLE 4: Mean and Standard Deviation of the Best Fitness Values Obtained using basic PSO and QPSO for Rosenbrock Functions 

  PSO   Quantum PSO   

  Mean 
Standard 
Deviation 

Global Best 
value Mean 

Standard 
Deviation 

Global Best 
value 

BasicPSO 2.8489E+00 3.8029E+00 7.0800E-02 1.1043E-04 5.5005E-04 1.2913E-13 

PSO In 1.8313E-11 1.2866E-10 1.1585E-17 4.1000E-01 2.8991E+00 2.8051E-14 

PSO Co 4.3847E-15 2.6133E-14 1.1590E-20 4.7917E-10 3.1498E-09 9.9911E-25 
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