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Abstract:- In opportunistic networks, direct 

communication between mobile devices is used to extend the 

set of services accessible through cellular or Wi-Fi networks. 

Mobility patterns and their impact in such networks have 

been extensively studied. In contrast, this has not been the 

case with communication traffic patterns, where 

homogeneous traffic between all nodes is usually assumed. 

This assumption is generally not true, as node mobility and 

social characteristics can significantly affect the end-to-end 

traffic demand between them. The proposed system is to 

explore the joint effect of traffic patterns and node mobility 

on the performance of popular forwarding mechanisms, 

through simulations. Here in, heterogeneity renders the 

added value of using extra relays more/less useful. 

Furthermore, we confirm the intuition that an increasing 

amount of heterogeneity closes the performance gap between 

different forwarding policies, making end to- end routing 

more challenging in some cases, or less necessary in others. 

I. INTRODUCTION 

 

Opportunistic Networks are used when the future is 

expected to support communication during environments 

which are really challenging, when the intermediate nodes 

are absent (Example: critical situations after 

disaster).Opportunistic Networks require nodes which are 

mobile in nature. These nodes communicate only when 

they come into direct communication. In order to 

communicate with each other the nodes should be in the 

same transmission range. 

 Most of the users make use of Bluetooth for 

transferring the data files. But the range of Bluetooth is 

limited compared to Wi-Fi range of transmission. Hence 

the communication within the nodes is not continuous and 

difficult to maintain end to end paths as well. As our main 

intension is to provide security for our data, the nodes don’t 

have interest to depend on intermediate. Because the third 

party may modify the data or information. Hence the 

sender node expects the destination node to come near the 

source node then receive the information. So the message 

can only be transferred when both the nodes come into 

direct contact.   

 Opportunistic networks also support modifying of 

existing network structure, by switching onto Wi-Fi 

networks from the user based cellular networks and also 

giving a chance for novel said applications. As the range of 

transmission is major factor for communicating, passing 

data to the destination is tough and it will not be 

continuous, managing becomes difficult and problematic. 

In order to provide secure data an original copy of the data 

is stored in source and carried over network and reaches the 

intermediate node which has no option to modify, further 

the packet is forwarded to the sink node when the 

intermediate node encounters the sink node. 

These Opportunistic networks also support modifying 

of existing network structure, by switching onto Wi-Fi 

networks from the user based cellular networks and also 

giving a chance for novel said applications. When user is 

using Wi-Fi networks they can communicate with many 

different nodes located in the same area. Here it’s easier for 

exchanging files, documents from source to destination. 

Because destination can travel nearer to source node. 

Suppose if the nodes are in different networks they can use 

only one intermediate node by keeping one copy with 

source node and then pass it on for the destination node 

through intermediate node. Keeping the safety of data as 

our main intension. 

Opportunistic networks consists of mobile nodes 

which are moving in character like mobile phones 

especially android, notebooks, laptops etc. That these 

devices exchanges nearer using Bluetooth. Where the 

transmission range is limited. As the range of transmission 

is the major factor for communicating, passing data to the 

destination node is tough and it will not be continuous and 

managing becomes difficult and problematic 

So, at this point of time the node has to depend on the 

neighbour node, but while a source has to send secure data 

it cannot trust the intermediate node. So it has an option 

where it can keep an instance of an information or data and 

then forward it to through destination, when the destination 

reaches that intermediate node. 

Since message exchange or information swapping or 

packets exchanging take place only when distance between 

nodes are less. Hence mobility parameter is the major 

factor in both performance and the protocol designing and 

their applications 

It’s difficult to understand human mobility for the 

simulations of mobile devices in a wireless network, but 

the present mobility models do not have reflection of real 

user movement position. The purpose we use computation 

of mobiles and communication [1] is to allow people 

interact with other people while moving and exchange 

information’s, files, data’s, documents to nearby people. 

Anyone who are involved in designing a system or network 

to provide services for the people they should have idea 

about them the people how they move. 
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 Whenever there is no intermediate nodes to 

communicate with the destination node these DTNs come 

into picture. These networks are mostly used in the 

networking technology. It follows three procedure first it 

stores itself a copy of packet and then carry along a 

network and then reach intermediate node[2] and then 

forwards to the destination node. Hence in order to avoid 

this mechanism it depends on mobility factor. Where each 

of nodes will be mobile. So that it makes sure to increase 

performance of delay tolerant network routing and protocol 

applications are mostly dependent on the mobility 

parameter of each nodes and its behaviour. 

 In this model herds of animals are used as 

message passers. We use a routing protocol that applies 

knowledge to predict the behaviour of each message. In 

order to select correct message for carrying data from [3] 

source to sink nodes by assuming that the cattle of sheep in 

the farmyard and flock of sheep in the garden area.   

 In order to send heterogeneous data we use 

distributed learning algorithm. This algorithm first 

separates the data based on the type of data and allocates a 

channel. Then the nodes use a function that tests the [4] 

channel like which channel is good and which channel is 

poor. If a channel outcome is success then that node uses 

the channel to transfer the data else it uses the other 

channel. If a channel outcome is poor then the node uses 

other channel to transfer the data. 

The query is how do we create an opportunistic network 

[6]? By using epidemic routing protocol and PROPHET 

protocols we can create these networks. Here each of the 

nodes reserves two channels one is to store the messages 

from their neighbour nodes and the other its own messages. 

Whenever the intermediate node goes nearer to the 

destination node at that point of time this transfers the 

messages stored in them. 

II. NETWORK MODEL 

 In network model we divide into two parts: 

 Mobility 

 Communication Traffic 

A. Mobility 

 In this part we consider a network w with w nodes 

which can move in a network covered in by an area which 

exceeds their transmission range. Between the two mobile 

nodes message exchanges when they come into direct face 

to face contact. In this point the message delivers to the 

receiver based on its two criteria mobility and the direct 

face to face communication. This gives a chance to use 

Markova frameworks for making an analysis of the 

message delivery progress. Finally in our project there are 

no bandwidth concerns in this framework. 

B. Communication Traffic 

 To analyse the traffic we to come across three 

questions: who wants to communicate with whom? And 

how long the communication goes on? And how much 

traffic is being exchanged between them? By looking back 

to our previous history of projects and when we analyse it 

technically and socially it proves that there exist a 

heterogeneous traffic whenever a data of heterogeneity is 

sent. Many don’t know the importance of opportunistic 

networks and their applications. These networks have a 

depth applications as location based and social 

applications. These networks majorly depend on special 

and social networks. It checks the location its transmission 

range and the people who use mobile nodes like laptops, 

smart phones to communicate with each other and for 

transferring the audio, video and file documents. 

 When it comes to the traffic two questions rises 

such that: whether traffic depends on the mobility of the 

nodes and whether there are any correlations between the 

traffic and mobility. But to be frank traffic is independent 

of mobility nature of nodes. It may have some effect on the 

delay but not totally.   

The same studies further suggest that this hetero- 

geneity depends on the spatial and social characteristics of 

these networks. Since location-based services  and social 

networking  are considered among the major applications 

supported by opportunistic networks, such traffic 

dependencies on social and/or spatial factors are very 

probable to appear. What is more, mobility characteristics 

have also been found to depend on spatial and social 

characteristics [10]. This clearly seems to argue for a non-

homogeneous traffic model. Moreover, traffic and mobility 

in such networks are expected to exhibit some correlations 

[13], [14]. Before we proceed to choose a traffic model, 

one should consider the following questions: Would the 

mere heterogeneity of trafficsuffice to affect performance? 

Is it necessary to consider traffic and mobility correlations? 

As stated earlier, information dissemination is determined 

by the sequence of contact events. Hence, if traffic 

character-Fig. 1. Mean delivery delay of 4 routing 

protocols, namely Direct Transmission, Spray and Wait 

(SnW), 2-hop, and SimBet, on the (a) Gowalla and (b) 

Strathclyde datasets. 

Statistics are independent of node mobility; one might 

expect a limited impact on performance. Towards 

examining the validity of the above argument, we decided 

to compare the performance of some well-known 

opportunistic protocols (direct transmission [4], spray and 

wait [5], 2-hop routing [18], and SimBet [7]) through 

simulations on two real traces (we discuss the traces in 

more detail, later, in Section 4), for three traffic scenarios:  

(i) Homogeneoustraffic: every pair of nodes has the 

same chance of being chosen as the source-destination pair 

for the next message;  

(ii) Heterogeneous traffic that is mobility independent: 

we assign randomly to each pair a different end-to-end 

traffic demand (with the normalized message generation 

rate for a pair drawn uniformly in [1,1000]); 

(iii) Heterogeneous traffic that is mobility dependent: 

end-to-end traffic between two nodes is proportional to 
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their contact rate. We generated an equal (sufficiently 

large) number of messages for all scenarios. Results for the 

mean message delivery delay are shown in Fig. 1. As is 

evident from these results, when traffic heterogeneity is 

independent of mobility (middle bar), the average delay is 

practically the same to the homogeneous case (left bar), for 

all protocols, and across all scenarios (including additional 

ones we have tried). In contrast, when traffic is 

heterogeneous and correlated with the contact rates 

(rightmost bar), Fig. 1 shows a clear difference in average 

delay for all scenarios and protocols. These results provide 

an initial answer to the above questions: It is not traffic 

heterogeneity itself that affects performance, but rather the 

joint effect of mobility and traffic (hetero- geneity). In 

other words, unless differences in traffic demand 

correspond also to differences in contact frequency (e.g. 

frequently meet- ing pairs tend to also consistently generate 

more/less traffic for each other), end-to-end performance 

will not be affected. This statement is also formally proven 

in Lemma 1 (Section 8.4). The above observation, together 

with the initial insight com- ing from real datasets, 

motivates us to propose the following simple, yet quite 

generic, model for end-to-end traffic. 

Definition 2 (Heterogeneous Communication Traffic). 

The end-to-end traffic demand (per time unit) between a 

pair of nodes {i,j}, is a random variable τij, such that E[τij] 

= τ(λij), where τ(·) is a continuous function from 

Hence, traffic demand between node pairs can differ 

and is on average correlated with the nodes’ contact rate. 

However, τij itself is still random, allowing some node 

pairs to have little traffic demand even if they meet often 

(e.g. “familiar strangers”). Furthermore, through the 

function τ(·) one can introduce a number of different types 

and amounts of (positive or negative) correlations between 

traffic and mobility. While real mobility and traffic patterns 

are clearly expected to have a number of additional nuances 

and details, not captured by the models of Def. 1 and Def. 

2, it turns out that these abstractions are still “rich” enough 

to allow us to draw useful conclusions. 

III ANALYSIS 

Consider now an opportunistic network with mobility 

and traffic according to the definitions of Section 2. To 

calculate a performance metric for this network, e.g. the 

expected delay, one would consider a large number of 

messages generated be- tween various source-destination 

pairs. Therefore, one would further need to know the 

contact rates between the sources and destinations of these 

messages. If a message was equally likely to be generated 

between any pairs of nodes, then the contact rate between 

the source and destination of this message should be 

distributed as fλ (Def. 1). However, if messages are more 

like to come from a frequently meeting pair rather than an 

“average” pair, then the source-destination contact rate (we 

refer to it as the effective contact rate) would be biased 

towards higher values. To this end, we derive the following 

basic proposition (whose proof is given in Section 8.1) for 

the probability distribution of the effective contact rates 

between source destination node pairs. 

Proposition 1. The probability density function fτ of 

the contact rate between the source and the destination 

{s,d} of a random message, in a network following 

Definitions 1 and 2, converges as follows: 

fτ(x)p →1 C ·τ(x)·fλ(x)  

Where fτ(x)dx = P{λsd ∈ [x,x + dx)}, 

p → denotes conver- gence in probability, and C = E[τ(λ)] 

=R∞ 0 τ(x)fλ(x)dx is a normalizing constant 

As Proposition 1 shows, the source-destination contact 

rate distribution depends both on the contact rate 

distribution fλ(λ) and the traffic  

 

Fig. 1. Mean delivery delay of 4 routing protocols, namely Direct 
Transmission, Spray and Wait (SnW), 2-hop, and SimBet, on the (a) 

Gowalla and (b) Strathclyde datasets. 

 

Patterns τ(λ) (i.e. joint effect of mobility and traffic). 

Specifically, the probability that the contact rate of a 

selected node pair takes a certain value, e.g. λsd ∈ 

[x,x+dx), is proportional to the number of pairs that contact 

with rate λij ∈ [x,x+dx) (i.e.∝fλ(x)) and the average traffic 

demand between them (i.e. ∝τ(x)). 

A. End-to-end Delivery Performance 

An opportunistic routing protocol tries to deliver the 

end-to- end traffic demand τij, and we would like to 

consider the effects of different contact patterns fλ and 

traffic patterns τ(λ) on its performance. There exists a very 

large abundance of proposed schemes [8] and it would not 

be possible, nor would it provide any intuition, to analyze 

the effect of heterogeneity on each and every one. Instead, 

we focus here on some basic mechanisms to gain intuition. 

The approach with the minimum overhead and complexity 

is Direct Transmission (“DT”): nodes wishing to exchange 

data or information with each other, may do so, only when 

they are in direct contact, without involving any relays. For 

instance, DT is often assumed in content-centric 

applications, where a node interested in some content will 

query directly encountered nodes for content of interest, 

and retrieve it only if it is available there. Furthermore, it is 

the only feasible approach if nodes do not have incentives 

to relay traffic they are not personally interested in, e.g. due 

to privacy or resource- related concerns. Nevertheless, DT 
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is known to suffer from long delays and low throughput. 

To improve the performance of direct transmission, 

replication or relay-assisted schemes can be used. Extra 

copies can be handed over to encountered nodes, and the 

destination can receive the message from either the source 

or any of the relays, reducing thus the expected delivery 

delay. Taken to the extreme, schemes like epidemic routing 

[15] forward the message at every possible encounter 

(deterministically, probabilistically, or based on some 

utility-function). Yet these do not usually scale well 

beyond networks with few tens of nodes, due to large 

resource usage. Instead, few relays are normally used, in an 

attempt to strike a good trade-off. In networks with 

homogeneous mobility and traffic, it is known that using 

just a few extra copies leads to significant performance 

gains. For example, in a network of 1000 nodes, simply 

distributing 10 extra copies to the first 10 nodes 

encountered provides an almost 10-fold improvement in 

delay compared to direct transmission [5]. Although this 

also comes with a 10-fold increase in the amount of 

(storage and bandwidth) resources needed, it presents a 

very useful trade-off to DTN protocol designers. However, 

when it comes to heterogeneous mobility and traffic, 

Proposition 1 suggests that, unlike the above example, the 

source is no longer equivalent with other random relays, in 

terms of their probability of contacting an intended 

destination soon. It is thus of particular interest to examine 

whether the above trade-off still holds, if one considers the 

joint effect of realistic mobility and communication traffic 

patterns. We thus consider, in the following, Relay-assisted 

routing, which is a simple abstraction of schemes that use 

extra randomly chosen relays2. To compare the 

performance of Relay-assisted routing and Direct 

Transmission, in terms of delivery delay and delivery 

probability (the two main metrics considered in related 

work), we first define the following metrics: (a) Delay 

Ratio, R: the ratio of the expected delivery delay of Relay-

Assisted routing, E[TR], over the expected delivery delay 

of Direct Transmission routing, E[TDT], i.e. 

R =E[TR] /E[TDT] 

(b) Source Delivery Probability, P(src.): the probability that 

a message is delivered to the destination by the source 

node, rather than by any of the relays. Both metrics contain 

information about the performance gain of Relay-assisted 

routing compared to Direct Transmission. Specifically, R 

shows how faster (on average) a message can be delivered 

under Relay-assisted routing, whereas P(src.) gives the 

probability that any of the relays will actually contribute in 

the delivery process. It is easy to see that (i) R and P(src.) 

always take values in the interval [0,1], and (ii) the higher 

their values are, the less the gain due to relay nodes is. For 

instance, when R = 0.1 Relay-assisted routing delivers (on 

average) a message 10 times faster than Direct Trans- 

mission, while a value R = 0.5 denotes that Relay-assisted 

routing is only 2 times faster. Respectively, when P(src.) = 

0.1 the probability that the source node s meets the 

destination d, before any other relay node meets d, is 10%, 

and P(src.) = 0.5 means that this probability is 50%. In the 

limiting cases, when R,P(src.) → 1 the message is 

delivered to the destination by the source node itself, while 

when R,P(src.) → 0 delivery takes place (entirely) due to 

the relays. In Result 1, we derive analytical expressions for 

these two metrics, R and P(src.). The proof is given in 

Section 8.2. Result 1. When Relay-assisted routing with L 

extra copies is considered, then 

where the expectations are taken over fλ and fR = f(∗L) λ is 

the L-fold convolution of fλ. 

In addition to the main metrics considered in this paper 

(Result 1), and for the reader’s ease of reference, in Table 1 

we provide expressions for the absolute performance 

(message delivery delay and delivery probability) of Direct 

Transmission and Relay- Assisted routing. The expressions 

follow straight from the proof of Result 1 or through 

similar analysis, and, thus, we omit the detailed derivations. 

B. Insights for Real Opportunistic Networks 

The expressions we derived in Result 1 are generic and can 

be used under any mobility and traffic pattern (i.e. for any 

fλ and τ(·)). However, they do not give a good feel as to 

how exactly these metrics are affected by mobility and 

traffic heterogeneity. To obtain some further insights, in 

this section, we consider specific classes of mobility and 

traffic patterns that capture commonly observed 

characteristics of real networks. For these classes, we 

derive simple closed form expressions that bound the 

performance metrics R and P(src.). 

Mobility We will assume the contact rates to be 

gamma distributed, i.e. fλ(x) ∼ Γ(x;α,β) = βα 

Γ(α)xα−1e−βx. Our choice is initially motivated by the 

findings of Pascrell et al. [10], who have shown, through 

statistical analysis  of pervasive social networks’ datasets, 

that the Gamma distribution matches well the observed 

contact rates. In addition, the analytical findings of [10], 

further suggest that the choice of a Gamma distribution can 

be supported in real opportunistic networks and can explain 

many of the observed properties (e.g. distribution of 

aggregate inter-contact times). Finally, by selecting 

appropriately the parameters α and β of a Gamma 

distribution, we can assign any desired value to the mean 

value µλ and the variance σ2 λ of the contact rates3. This 

allows us to describe (or fit up to the first two moments) a 

large range of scenarios with different mobility 

heterogeneities captured by CVλ = σλ µλ . 

Traffic We further describe the traffic using a 

polynomial function of the form τ(x) = c·xk, c > 0. As in 

the case of mobility, the reasons for our choice are as 

following. Observations of real networks have shown that 

the nodes with high contact frequencies tend to exchange 

more traffic [13], [14], which is consistent with the above 

choice when k > 0. Second, the exact traffic patterns (i.e. 

τ(x)) in a real scenario are difficult (if not impossible) to 

determine, and, hence, it is more probable that simple 

methods will be used. For example, one might get some 

traffic samples and perform linear regression on the 

measured data. This would result in a linear τ(x) (i.e. k = 

1). Our model extends this logic by going beyond linear 

fitting and allowing as well sub- and super-linear fitted 
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traffic patterns. In general, the values of k capture the 

amount of traffic heterogeneity. Furthermore, by choosing 

0 < k < 1 (or k > 1) one can emulate concave (or convex) 

functions and, thus, approximate different traffic patterns. 

Finally, one can also consider negative correlations, by 

choosing k < 0. Although less common, these could arise, 

for example, in applications where users want to 

communicate more when they do not meet frequently (e.g. 

messaging). Under the above assumptions, the following 

result for the relative performance of the information 

dissemination mechanisms we consider in this paper, holds. 

The proof of Result 2 is given in Section 8.3. The 

corresponding expressions for the absolute performance 

metrics are given in Table 1. Result 2. In a Heterogeneous 

Contact Network where fλ ∼ Γ(α,β) with mean value µλ 

and variance σ2 λ (coefficient of variation CVλ = σλ µλ ) 

and τ(x) = c·xk, it holds: 1 ≥ R ≥ Rmin = 1 + (k−1)·CV 2 λ 

1 + k·CV 2 λ + L (2) for k > kmin = 1− 1 CV 2 λ , and 

1≥ P(src.) ≥ Pmin =1 + k·CV 2 λ 1 + (k + 1)·CV 2 λ + L 

(3)for k > kmin = − 1 CV 2 λ . 

The expressions of Result 2 depend only on 3 parameters 

(CVλ, k, L) and, thus, could be. 

C. IMPLICATIONS 

It is evident from the above example that traffic 

heterogeneity can have a major impact on performance and 

thus protocol design. Table 2 formalizes this impact, by 

considering how Rmin and Pmin (Eq. (2) and Eq. (3)) 

behave: The middle column shows their monotonicity as 

mobility heterogeneity (CVλ), traffic heterogeneity (k), and 

amount of extra copies (L) increase. For instance, when k 

increases (%), Rmin and Pmin increase (%) too. The right 

column gives their values in the limit for large/small k or 

CVλ; e.g. collaborative or local. Such schemes have been 

proposed [32], [33] to collect contact related information 

for forwarding algorithms, but would now need to maintain 

also traffic-related information and correlate it with the 

information about the node contact rates, in an efficient 

manner. 

Routing for Unicast Applications For high 

heterogeneity (traffic and mobility), our results imply that a 

unicast message is likely to arrive to its destination at the 

time the source and destination come in contact (i.e. Rmin, 

Pmin → 1 as k,CVλ →∞). This raises questions about the 

usefulness of opportunistic networking for unicast 

applications in which end-to-end traffic is expected to be 

highly correlated with contact frequency (e.g. Facebook 

messaging) [13], [14]. On the other hand, our results 

suggest that potential unicast applications with an end-to-

end traffic demand between nodes with non-frequent 

meetings, i.e. scenarios with small or negative k, (e.g. 

social peers residing in different communities) could 

benefit a lot (more than normally assumed). Although these 

observations might appear somewhat self- evident at first 

glance (note however the case described in the previous 

subsection), the question of how to tune protocols and 

choose the right number of replicas stills remains. To our 

best knowledge, our results are the first to provide closed 

form, quantitative insights into the tradeoffs involved in 

real scenarios with both mobility and traffic heterogeneity. 

Moreover, one could raise a point about their applicability 

for sophisticated protocols that choose relays intelligently 

(e.g. based on contact rates, social graphs). In this case, a 

source node could try to wait and select better relays than 

giving the copies to the first randomly encountered peers, 

thus improving the impact per replica. Nevertheless, in a 

highly heterogeneous scenario, a source might need to wait 

a long time until it encounters such good relays (“spray” 

phase) and this could counter-balance the effect of better 

relays. In Section 5, we prove that the qualitative 

implications of our results hold also for such mobility-

aware protocols, which exploit mobility heterogeneity in 

order to select better relays. A complementary explanation 

for this qualitative result is given in the end of this section 

(see Fig. 2 and the corresponding commentary). 

In this section, we elaborate on some important 

implications that follow from Table 2. 

Gain of Extra Copies A strong positive correlation 

(large k) between traffic and mobility reduces the added 

value of extra copies (i.e. Rmin, Pmin % as k %). This 

indicates that, as correlation (k) in- creases, one needs to 

distribute message copies to more relays nodes in order to 

achieve a certain performance improvement compared to 

the baseline, Direct Transmission. In contrast, a negative 

(or weak positive) correlation renders each extra copy more 

useful (i.e. Rmin, Pmin → 0 as k → kmin4). The fact that a 

weak positive correlation, e.g. k ∈ (0, 1 L), actually makes 

extra copies more useful might be a bit surprising. 

However, it is explained as following: Mobility 

heterogeneity (when traffic is homogeneous or uncorrelated 

with mobility) affects negatively the message delivery 

delay (of random protocols and Direct Transmission) [9], 

[11], whereas positively-correlated traffic has an opposite 

effect (i.e. decreases delay). The counterbalancing effects 

of these two factors determine a threshold (e.g. 1 + 1 L for 

Rmin or 1 L for Pmin) under which the negative effects of 

heterogeneity affect more the message delivery process. 

Our framework, not only reveals this inherent trade-off, but 

also provides the tools for quantifying such thresholds. 

From the above discussion it becomes evident that it is 

crucial to identify whether a traffic-mobility correlation 

exists in a given scenario, and what its nature is, as this 

could decide whether the overhead of using few or more 

extra copies is justified or would just waste a lot of 

valuable resources. In practice, this means that a relay-

assisted protocol should be complemented with an online 

estimation algorithm, Content-Centric Communication 

While our results are somewhat pessimistic when it 

comes to the usefulness of opportunistic networking for 

unicast applications, the opposite holds when it comes to 

modern, content- centric applications (e.g. file sharing, 

D2D-based offloading, service composition). In such 

applications nodes are looking, for example, for some 

content of interest [3] or service [2], which they can access 

directly from any encountered node that offers it. If the 
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interests of nodes are heterogeneous (which is known to be 

the case) and nodes with similar mobility patterns tend to 

have some similarity in their interests too (evidence for this 

does exist ), then our results suggest: (i) that there is a 

better chance to find a content or service “soon” from a 

directly encountered node than one would expect in 

homogeneous scenarios, and (ii) coming up with complex, 

resource-costly mechanisms, e.g. multi-hop query-

response, directories, etc., might not be necessary. We plan 

to look into such content-centric scenarios in more detail in 

future work. 

 

Fig. 2. Message delay under Direct Transmission, Spray and Wait (L = 5), 
and Epidemic routing in scenarios with varying traffic heterogeneity; 

mobility parameters are µλ = 1 and (a) CVλ = 1 and (b) CVλ = 2. 

 

To put some extra evidence on our arguments and 

further demonstrate how and why traffic heterogeneity 

affects the relative performance, in Fig. 2 we compare the 

message delay of (i) Direct Transmission (i.e. the protocol 

with the highest delay), (ii) Relay-assisted routing (Spray 

and Wait, SnW, [5] with L = 5 copies) and (iii) Epidemic 

routing [15] (i.e. the protocol with the lowest delay), in two 

scenarios, for varying traffic heterogeneity (k). Two main 

observations, with respect to the previous implications, can 

be made in Fig. 2. At first, an increasing amount of traffic 

heterogeneity/correlation closes the performance gap 

between the best (Epidemic) and the worst (Direct 

Transmission) forwarding policies. Hence, it becomes 

evident that the possible gain one could achieve by using 

any routing protocol and any number of extra copies, 

diminishes. As a result, routing schemes, whose design is 

crucial in homogeneous scenarios (since the improvement 

gap is large; see Fig. 2 for regions with low k), become less 

important in heterogeneous scenarios with highly 

correlated traffic (since the improvement cannot be large; 

see Fig. 2 for regions with high k) and/or less necessary 

(since comparable performance can be achieved with 

Direct Transmission; e.g. Fig. 2(b) for k = 4). Second, the 

delay of Direct Transmission decreases radically as traffic 

heterogeneity increases5. Although the delay of Relay-

assisted routing decreases with traffic heterogeneity k too, 

the effect is less significant. Specifically, an observation of 

the delay curves for Direct Transmission and Relay-

assisted routing in Fig. 2(a), shows that the delay ratio R = 

E[TR] E[TDT ] increases as traffic becomes more 

heterogeneous. However, this increase is mainly due to the 

improved performance of Direct Transmission rather than 

this of Relay-assisted routing. 

IV.MODEL VALIDATION 

To validate our model and analysis, in this section we 

compare the theoretical results against Monte Carlo 

simulations on various synthetic scenarios, and on datasets 

of real networks. 

A. Synthetic Simulations 

We generate synthetic networks, conforming to the 

mobility and traffic models of Section 2, as following: (i) 

We assign to each pair {i,j} a contact rate λij, which we 

draw randomly from fλ, and create a sequence of contact 

events (Poisson process with rate λij). (ii) Since E[τij] = 

τ(λij) (from Def. 2), we draw the traffic rate for each pair 

{i,j} as τij ∼ Uniform[0,2·τ(λij)]. (iii) Then, we simulate a 

large number of message exchanges, choosing randomly 

for each message the source-destination pair according to 

the weights τij. We created different scenarios (N,L,fλ,τ(·)) 

to verify our analysis under various network parameters. 

Here, we present the simulation results for scenarios with N 

= 500 nodes6. As Relay-assisted routing, we used the 

Spray and Wait protocol [5] with L = 5 copies. To be 

consistent with the analysis of Section 3.2, we used the 

Gamma distribution as the contact rates distribution fλ and 

traffic functions of polynomial form, τ(x) = c·xk. In Fig. 3 

and Fig. 4 we present simulation results for the ratios R and 

probabilities P(src.), along with the corresponding 

theoretical results (exact predictions of Result 1 and lower 

bounds of Result 2), in scenarios with varying mobility and 

traffic heterogeneity. Fig. 3 shows the delay ratio R: (a) in 

three scenarios with different traffic functions τ(x) 

(namely7: c·√x, c·x2, and c · x4), under varying mobility 

heterogeneity; and (b) in three mobility scenarios with CVλ 

= {0.5,1,2}, under varying traffic heterogeneity. A first 

observation is that the exact expressions of Result 1 

(continuous lines) can accurately predict the metric R 

(simulation results are denoted with circles). Additionally, 

the lower bounds are always below the simulation curves 

(as expected), and in many scenarios are quite tight. Under 

the same mobility (CVλ) and traffic (k) simulation 

scenarios, similar observations can be made for the source 

delivery probability P(src.) in Fig. 4, where the exact 

expres- sions of Result 1 accurately match the simulation 

results and the bounds of Result 2 are tight in most 

scenarios. In general, for both the metrics R and P(src.), the 

theoretical lower bounds are less tight for scenarios where 

mobility is quite heterogeneous. Specifically, in Fig. 3(a) 

and 4(a), the bounds are less close to the simulation curves 

in the regimes where CVλ becomes larger than 2. Also, in 

the scenarios with varying traffic heterogeneity (Fig. 3(b) 

and 4(b)), the bounds are tight for scenarios with small and 

moderate mobility heterogeneity, and become less tight 

only in the scenarios with CVλ = 2 (bottom plots of Fig. 

3(b) and 4(b)). In every scenario, the simulation curves R 
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and P(src.) have the monotonicity we predicted in Table 2 

(middle column) for the theoretical bounds Rmin and 

Pmin. For instance, when traffic heterogeneity (k) 

increases, R and P(src.) always increase as well (Fig. 3(b) 

and 4(b)). Also, in the regimes that k ≤ kmin8 the 

simulation values of the considered metrics become almost 

zero, and for large k (especially in the bottom plots of Fig. 

3(b) and 4(b), where mobility is also very heterogeneous) 

they get close to 1, thus validating the qualitative 

predictions of Table 2 (right column). The simulation 

results in Fig. 3(a) and 4(a), where we present scenarios 

with varying mobility heterogeneity (CVλ), validate our 

predictions for the monotonicity and limiting behavior as 

well. For example, in Fig. 3(a) for k = 0.5, where the 

traffic-mobility correlation is small (the same holds also for 

negative correlations), R and Rmin decrease as the mobility 

heterogeneity increases (as suggested in Table 2). In the 

rest of the plots, the bounds and the corresponding 

simulated values increase, demonstrating that the gain of 

the extra copies diminishes under such conditions, and, 

thus, confirming our qualitative results (Section 3.3). For 

example, in the bottom plot (k = 4) of Fig. 3(a), we can see 

that the improvement offered by the extra relays is at most 

6×(since R = 1 1+L = 1 6) for homogeneous network (CVλ 

= 0), while for CVλ > 2 the extra gain is at most 

1.25×(since R > 0.8); that is, even using  5 relays will only 

marginally improve the delay. Similarly, from Fig. 4(b) and 

for CVλ = 2, we can see that, while for almost 

homogeneous traffic (k < 0.5) the probability of the 

message being delivered through direct transmission, 

P(src.), gets less than 40%, when traffic becomes very 

heterogeneous (k ≥ 4), this probability is around 80%. 

Fig. 3. R in scenarios with varying (a) mobility and (b) traffic 

heterogeneity. Simulation results are denoted with circles; the theoretical 
predictions of Result 1 (exact predictions) with continuous lines; and the 

lower bounds Rmin (Result 2) with dashed lines. 

 

B.Real-World Networks 

To further investigate the applicability of our results in 

real-world networks, we conduct simulations on datasets 

collected from online social networks (Gowalla / Twitter 

dataset [13]) and a mobile phone usage experiment 

(Strathclyde dataset). In the following discussion we 

present the datasets, whose main features can be found also 

in Table 3.9 

Gowalla / Twitter dataset Gowalla was a location-

based social network, where users were able to check-in at 

”spots” (bars, shops etc.) through their mobile phones. In 

addition, a user could connect her Gowalla account to her 

Twitter account. Hence, from this dataset, we could retrieve 

information related both to nodes’ mobility (Gowalla 

check-ins) and communication traffic (tweets). Mobility: In 

this dataset, we consider as a contact event the time when 

two users reside in the same ”spot” simultaneously10. The 

contact rates λij can be computed from the number of the 

contact events and the inter-contact time intervals. Then, to 

incorporate this information in our model, we fit the contact 

rates distribution fλ with a known probability distribution ˆ 

fλ. Specifically, in the two cities, Austin (AU) and San 

Francisco (SF), for which we have the most user records 

(1004 and 479 nodes, respectively), the experimental 

CCDF (complementary cumulative distribution function) 

of the contact rates λij can be approximated by a straight 

line on a log-log plot. This implies that fλ could be fitted 

with a Pareto distribution, instead of the Gamma 

distribution assumed in Section 3.2 and often observed in 

traces. Therefore, we use here the expressions of Result 1, 

instead of Result 2. Communication Traffic: As an 

indication for the communication traffic that two nodes 

would exchange in an opportunistic network, we use the 

number of tweets in which they are both involved. Hence, 

for each pair {i,j} we set its traffic rate τij equal to the 

number of tweets posted by i to j or by j to i, i.e. τij = 

#tweetsij. Then, we approximate the observed relation 

between traffic and contact rates (τij ∼ λij) with a function ˆ 

τ(x), in order to use it in our theoretical expressions. We 

also investigate more possible correlations between the 

opportunistic traffic (τij) and the Twitter traffic (#tweets), 

by creating two additional scenarios where we set τij 

=p#tweetsij and τij = (#tweetsij)2. The approximate 

functions ˆ τ(x) for each scenario are presented in Table 4, 

where we can see ˆ τ(x) being of type c·xk with k < 1. 

Strathclyde dataset The Strathclyde dataset was collected in 

an experiment, in which 24 high school students were 

selected and given modified smartphones, which recorded 

proximity events (through Bluetooth), calls and sms 

exchanged between the phone user and the other 

participants. Mobility: In this dataset the contact events 

were already recorded and, thus, we did not have to 

preprocess the data as in the Gowalla dataset. We followed 

the same methodology to calculate the contact rates λij and 

fit their distribution with a Gamma distribution, denoted as 

ˆ fλ. Communication Traffic: We consider three scenarios, 

in each of which we use a different communication traffic 

metric: (i) total number of calls and sms, τij = #callsij 

+#smsij, (ii) total duration of calls, τij = callTimeij, and 

(iii) total length of sms (in characters), τij = smsLengthij. 

For each scenario, we fit function ˆ τ(x) as before, through 

the relation τij ∼λij. Simulations In both datasets and for 

each traffic scenario, we generate 10000 messages at 

random time points, choosing each time the source - 

destination pair according to the weights τij. We consider 
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Direct Transmission and Spray and Wait routing [5] with L 

= 2,5,10,20 copies per message. In the analytical 

expressions we use the fitted functions ˆ fλ(x) and ˆ τ(x). In 

Fig. 5 we present the simulation values for the ratio R and 

the probability P(src.) (green/left bars), and the 

corresponding theoretical predictions (yellow/right bars). 

We consider homo- geneous and heterogenous (denoted 

with ∗) traffic scenarios in the Gowalla/Twitter (AU and 

SF) and Strathclyde (St) datasets. The first observation is 

that in all scenarios, for heterogeneous traffic (i.e. scenarios 

denoted with ∗), the values of the metrics R and P(src.) 

increase, compared to the corresponding homogeneous 

scenarios. This shows that the relative gains of relay-

assisted schemes decrease with traffic heterogeneity, as our 

theoretical results predict. Moreover, larger performance 

differences predicted by our theory, are matched by larger 

per- formance differences in the respective simulation 

scenarios as well. For example, in the SF scenarios (middle 

bars in Fig. 5(a) and Fig. 5(b)), the theoretical predictions 

for heterogeneous traffic are slightly higher than for the 

homogeneous case; the same holds also for the simulation 

results, where it can be seen that R and P(src.) do not 

significantly increase with traffic heterogeneity. On the 

other hand, in the St scenarios (right bars in Fig. 5(a) and 

Fig. 5(b)), our results predict a higher difference (between 

heterogeneous and homogeneous cases) than before, which 

is also confirmed by the simulation results where the 

performance effects are not negligible. To further 

demonstrate to what extent our results can capture the 

effect of traffic heterogeneity in real scenarios, in Table 5 

we focus on the qualitative predictions of our theory, by 

comparing a number of scenarios with different amounts of 

heterogeneity to each other, for the Gowalla/Twitter 

dataset11. Specifically, if the simulated performance 

improves from one scenario to another, and so is the 

theoretical prediction, the prediction is assumed to be 

correct and denoted with X. “Incorrect” predictions are 

denoted with ×. For example, in the scenarios AU-S1 and 

SF-S3 the simulation values for the ratios R are R(AU−S1) 

= 0.89 and R(SF−S3) = 0.94, i.e. R(AU−S1) < R(SF−S3). 

For the theoretical predictions it holds also that R(AU−S1) 

= 0.64 < R(SF−S3) = 0.68 and, thus, the prediction is 

assumed to be correct. The elements above the diagonal 

refer to the ratio R, whereas the lower triangular part refers 

to the probability P(src.) predictions. It is evident that in the 

majority of the cases we consider, the theoretical results 

can capture the relative changes in network performance, 

even between different environments (i.e. between AU and 

SF)12. The same conclusions can be reached by the 

analysis in the Starthclyde dataset, in which all the 

respective comparisons were found to be correct X. 

V. RELATED WORK 

Useful implications for opportunistic networking have 

arisen from the investigation of mobility/social ties and 

social ties/communication traffic correlations, which have 

been stud- ied extensively and under different disciplines, 

like anthro- pology, sociology, social media  or pervasive 

social networks [10]. For example,  shown that the amount 

of exchanged communication traffic between users of 

OSNs depends on their social relationships. On the other 

hand, the communication traffic / mobility correlation has 

not been given similar attention. There exist only a few 

works [13], [14] studying it in a framework relevant to 

opportunistic networking. In [13], Hossmann et al. 

collected and analysed two datasets from online social 

networks (Facebook and Gowalla / Twitter), and 

investigated the relations among three dimensions: 

mobility, social ties, communication traffic. With respect to 

our study, they found that there is strong dependence 

between mobility and traffic, and, specifically, node pairs 

that contact during the experiments’ duration, communicate 

with higher probability than the other pairs. 

Correspondingly, authors in [14] analysed a massive 

dataset of Call Detail Records (CDRs) of 6 million users 

and shown a positive correlation between the mobility and 

communication traffic patterns. Not only they shown that 

the higher the contact rate (λij) of a node pair is, the higher 

the probability that the nodes communicate intensively, but 

also found that information inferred by the mobility 

patterns can work as a good predictor for future 

communication events. However, despite the fact that [13], 

[14] show clearly that communication traffic is 

heterogeneous (and correlated to mobility), to our best 

knowledge, its effects on communication performance have 

not been studied previously. Finally, with respect to our 

results and the insights ob- tained from them, it has already 

been observed that realistic mobility patterns (e.g. locality, 

community) can hurt the performance of Relay-Assisted 

routing (especially simple, random protocols [5]). 

However, this is a performance degradation that is due to 

the relays being too similar to the source (e.g. all in the 

same community or with com- mon characteristics). 

Instead, the relative performance degradation here comes 

due to the source and relays being too different in terms of 

their encounter rates with the destination. 

VI.CONCLUSIONS 

Motivated by (i) recent findings indicating 

heterogeneous traffic patterns in mobile social networks 

and (ii) the lack of related studies, in this paper, we 

modelled traffic heterogeneity and studied how it affects 

the performance in opportunistic net- working. We found 

that the effects can be significant, changing our 

understanding of common design principles, such as the 

added value of relays. Despite the fact that some of our 

qualitative conclusions seem to be rather intuitive, they 

have not attracted any focus in previous studies, where 

performance analysis of communication schemes is 

conducted assuming homogeneous traffic. This indicates a 

necessity for revisiting the evaluation of protocols in 

scenarios that entail diversity in the traffic exchanged 

between nodes. Moreover, our results have some 

interesting implications about the usefulness of 

opportunistic networking for various applications. We 

believe that our study provides an initial understand- ing on 

the effects of traffic heterogeneity. However, traffic 

patterns in real networks might have much more complex 
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characteristics than what can be captured by our 

framework, e.g. time-dependent traffic/mobility 

correlations. Therefore, for a more complete 

characterisation of traffic demands in oppor- tunistic 

networking (either for end-to-end or content-centric 

applications [2], [3]), we believe that further experimental 

(e.g. measurements, recognition of traffic patterns in 

available datasets, etc.) and analytical research is needed.  
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