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Abstract  
Flexural modulus is one of the important 

properties of a material which is a measure of 

stiffness of the material. Several standards are 

available in literature for the specimen dimensions 

and loading for the estimation of flexural modulus 

of isotropic and reinforced composites. A range of 

values are specified for length, width and thickness 

of three-point bend specimen in the available 

standards. Present investigation aims in finding the 

effect of the specimen dimensions on flexural 

modulus of isotropic and FRP composite materials 

using three-dimensional finite element analysis. 

The problem is modelled in ANSYS software and 

the flexural modulus evaluated from the transverse 

deflection is compared with the actual material 

property given as input to solve the problem. The 

effect of physical dimensions of the specimen on 

percentage error of Young’s modulus is discussed.  

 

1. Introduction  
Two different test methods viz. 3-point bend 

and 4-point bend are suggested in most of the 

literature for prediction of flexural modulus of 

isotropic and fiber reinforced composites. Out of 

these, 3-point bend is simple to design but 

ambiguous in the result as the flexural formula used 

to find the modulus is derived from mechanics of 

materials theory that is based on several 

assumptions such as plane cross section remains 

plane after deformation, structure is under pure 

bending etc.  

Some of the standards (ASTM D790M-

93[1], CRAG[2], and ISO-14125[3]) specifying the 

specimen dimensions are listed in Tables 1 and 2. 

The ASTM specifications allow a wide freedom of 

choice in terms of specimen dimensions, as long as 

the cross-section is rectangular and specific span to 

thickness ratio (s/h) ratios (16:1, 32:1, 40:1 and 

60:1) in both three-point and four point bending.  

CRAG three-point bend loading 

arrangement requires a particular laminate 

thickness of 2mm and specifies (s/h) ratios 

dependent on layup and type of fiber used [4].  

 

Table.1 Dimensional possibilities for flexure 

specimens in several specifications 

 

Specification Thickness 

(mm) 

Width 

(mm) 

Length 

(mm) 

ASTM D790 M 1-25 10-25 50-1800 

CRAG 2 10 100 

 

ISO-14125 appears to be a combination of 

above two and Table 2 gives specimen dimensional 

possibilities for 3-point bending tests in this 

standard. 

 

Table.2 Recommended specimen dimensions for 

different material types for three-point flexure in 

ISO-14125 

Material Length 

(mm) 

Span 

(mm) 

Width

(mm) 

Thickness

(mm) 

Class I 80 64 10 4 

Class II 80 64 15 4 

Class III 60 40 15 2 

Class IV 100 80 15 2 

 

In Table 2, Class I: discontinuous fiber-reinforced 

thermoplastics. Class II: mat, continuous mat, 

fabric and mixed format reinforced plastic. DMC 

(dough moulding compound), BMC (bulk 

moulding compound) and SMC (sheet moulding 

compound). Class III: transverse (90) unidirectional 

composites. Unidirectional (0) and multi directional 

composites with 5<E11/G13≤15 (for example, glass 

fibres systems). Class IV: unidirectional (0) and 

multidirectional composites with 15< E11/G13≤ 50 

(for example, carbon-fibre systems). 

        Bending properties (strength and modulus) of 

woven composites were determined experimentally 

using 3-point and 4-point bend tests according to 

JIS K 7055 [5]
. 
The dimensions recommended are 

length 80mm, width 26mm, depth 3.5mm. Tensile 

and bending properties of [0/±45/90]s woven FRP 
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composites are investigated by Khashaba and Seif 

[6]. 

     In the present work, 3-point bend problem of 

isotropic and unidirectional FRP composite 

materials is simulated using three-dimensional 

finite element method in ANSYS 12 software for 

different geometries to assess the effect of 

geometry in accurate prediction of flexural 

modulus. 

 

2. Problem Modelling 

 
2.1 Geometric Modelling  

 
Case (i):  The width and depth are taken as 25mm, 

3 mm respectively and span of the model varies as 

70, 100, 150, 200, 300, 400mm. 

Case (ii): The span of the specimen is taken as 

70mm and the depth equal to 3 mm. The width is 

varied as 25, 20, 16, 12.5, 5mm. 

Case (iii): The length, width, depth are taken as 

70mm, 25mm, 3mm respectively for different 

values of E1/E2 ratio. E1/E2 values are taken as 1, 2, 

4, 8, 10, 15, 20, 25, and 30. 

Figure 1 shows a sample FE model for 3-

point bend test. 

 

Figure 1 Geometry and FE mesh for a 3-D model 

 

2.2 Finite Element Modelling 

SOLID 20 node 95 element of ANSYS 

software [7] is used. This element has three degrees 

of freedom at each node. 

 

 

2.3 Boundary conditions and Loading 

Simply supported beam conditions are taken 

for beam. A load of 1N is applied in negative z 

direction of the beam at the centre. 

 2.4 Material Properties    

The following material properties are used. 

                   E = 200 GPa and ν = 0.25 for isotropic material. 

Carbon FRP with 63% volume fraction possessing 

following properties is considered for orthotropic 

case [8].  

      E1 = 147 GPa; E2= E3=10.3 GPa 

       ν12 = ν13 = 0.27; ν23 = 0.54 

      G12 = G13=7.0 GPa; G23=3.7 GPa 

  In case of composite material with 

variable E1/E2, E1 is varied as per the assumed ratio 

by keeping other properties same.   

                                                     

3. Discussion of Results  
            The results are obtained by changing the 

dimensions of the beam. The transverse   

deflection, Uz is evaluated from the successful 

execution of the ANSYS software after conducting 

several convergence tests. From the Uz value 

obtained, the Young‟s modulus (E) is calculated 

using Euler-Bernoulli beam equation. The obtained 

value and the original value of Young‟s modulus 

are compared and the error is plotted for both 

isotropic and composite materials. 

 3.1 Convergence & Validation of FE model 

         A beam of length 70mm, width 25mm, and 

depth 3 mm is taken. Mesh refinement is done by 

changing the number of divisions and the 

deflection Uz is calculated using FEM. The results 

obtained are plotted on a graph (figure 2). It is 

observed that for an element size of 1.75 mm and 

below the output is constant. Thus the quality of 

mesh is fixed for this element edge length. 

           To validate the mesh quality, a uniaxial 

stress of 10 MPa is applied on a model of length 

70mm, width 25mm, and depth 3 mm and axial 

deflection is noted down and the longitudinal 

Young‟s modulus is determined. It is obtained as 

200MPa which is the input value. Thus the FE 

model is validated. 
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Figure 2 Convergence test results 

          From the figure 3, which is drawn between 

the length of the beam and %error in Young‟s 

modulus (E) for an isotropic material, the following 

observations are made.  

 With increase in „length‟ there is a 

decrease in the % error of the Young‟s 

modulus „E‟   

 At a span of 70 mm the error is around 

2.5%, and at a span of 350mm it is almost 

zero. 

From the figure 4, which is drawn between the 

width of the beam and %error in Young‟s modulus 

(E) for an isotropic material, the following 

observations are made.  

 With the decrease in width there is a 

decrease in the % error of the Young‟s 

modulus „E‟   

 At a width of 25mm the %error is above 

2% and at a width of 5 mm there is an 

error of 0.5%. 

From the figure 5 which is drawn between the span 

of the beam and % error in Young‟s modulus (E1) 

for composite material, the following observations 

are made. 

 With the increase in „length‟ there is a 

decrease in the % error of the Young‟s 

modulus „E1‟   

 At a span of 70 mm the error is around 

8.26%, and at a span of 400mm it is 

0.46% 

From the figure 6 which is drawn between the 

length of the beam and % error in Young‟s 

modulus (E2) for composite material, the following 

observations are made. 

 With the increase in „length‟ there is a  

decrease in the % error of the Young‟s 

modulus „E2‟   

 At a span of 70 mm the error is around 

0.535%, and at a span of 400mm it is 

0.246 %. 

From the figure 7, which is drawn between the 

width of the beam and % error in Young‟s modulus 

(E1) for a composite material, the following 

observations are made. 

 With the decrease in width there is a 

decrease in the % error of the Young‟s 

modulus „E1‟   

 At a width of 25mm the %error is above 

8.26% and at a width of 5 mm there is an 

error of 5.45%. 

From the figure 8, which is drawn between the 

width of the beam and % error in Young‟s modulus 

(E2) for a composite material, the following 

observations are made. 

 With the change in width there is no 

change in the % error of the Young‟s 

modulus „E2‟ i.e., there is no effect of 

change in width on E2. 

From the figure 9 which is drawn between the 

„E1/E2‟and % error in Young‟s modulus (E1) for 

composites material, the following observations are 

made.  

 With the increase in ratio „E1/E2‟ there is 

an increase in the % error of the Young‟s 

modulus „E1‟   

 At a ratio of „30‟ the error is around 

14.2%, and at a ratio of „1‟ it is 1.33% 

From the figure 10 which is drawn between the 

„E1/E2‟ and % error in Young‟s modulus (E2) for 

composite material, the following observations are 

made. 

 With the increase in ratio „E1/E2‟ there is a 

decrease in the % error of the Young‟s 

modulus „E2‟   

 From „E1/E2‟4 to 15 it is almost constant. 

 At a ratio of „30‟ the error is around 

14.2%, and at a ratio of „1‟ it is 1.33% 

       Figure 3 Variation of % error in „E‟ with 

respect to „length‟ for an isotropic material 
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Figure 4 variation of % error in E with respect to 

„width‟ for an isotropic material 

Figure 5 Variation of % error in „E1‟ with respect to 

„length‟ for a composite material 

Figure 6 Variation of % error in „E2‟ with respect to 

„length‟ for a composite material 

Figure 7 Variation of % error in „E1‟ with respect to 

„width‟ for a composite material 

Figure 8 Variation of % error in „E2‟ with respect to 

„width‟ for a composite material 

 Figure 9 Variation of % error in „E1‟ with respect 

to „E1/E2‟for a composite material 
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Figure 10 Variation of % error in „E2‟ with respect 

to „E1/E2‟for a composite material 

4. Analysis 
To find out the reasons for error in flexural 

modulus, the variation of axial deformation across 

the height of the beam is plotted for two different 

cases, one where there is a lot of error (E1/E2=30) 

for a beam of length 70mm, width 25mm and depth 

3mm and other where there is no significant error 

(E1/E2=2) for a beam of length 250mm, width 

12.5mm and depth 3mm in figures 11 and 12.  

In the figure 11 it is observed that the graph 

obtained is an equation of cubic order. But by 

Euler‟s assumptions the graph obtained should be 

linear. Thus the Euler‟s assumption of plane cross-

section remains same after deformation has failed 

which resulted in error. 

In the figure 12 it is observed that the graph 

obtained is a linear equation. By Euler‟s 

assumptions the graph obtained should be linear. 

Thus the Euler‟s assumption is true for lower 

values of „E1/E2‟ratio for a beam of length 250mm, 

width 12.5mm and depth 3mm. 

 

Figure 11 variation of Ux along the depth of a 

composite material for „E1/E2‟= 30 

 

Figure 12 variation of Ux with respect to depth of a 

composite material for „E1/E2‟=2 

5. Conclusions 
Three-dimensional finite element simulation 

is made for a 3-point bend test to find the effect of 

geometrical dimensions on flexural modulus 

obtained from this test using Euler‟s bending 

formula. The analysis is carried out for isotropic 

and carbon FRP materials and the percentage 

deviation in transverse modulus due to change in 

geometry is evaluated. The following conclusions 

are drawn. 

 Span to depth ratio should be more than 50 for 

a fixed width of 25mm. 

 The width of the specimen should be smaller 

than 5mm for a fixed span to depth ratio of 

70/3. 

 In case of composite materials where the 

percentage deviation is more, though the 

design of 4-point bend experiment is 

relatively complex, the flexural modulus from 

this test may give better results as there exists 

pure bending in the structure. 

 

6. References  
[1]   ASTM D790 M-93, “Standard test methods for 

flexural properties of unreinforced and reinforced 

plastics and electrical insulating materials”, 

American Society for Testing and Materials, 

Annual book of ASTM Standards, Vol.08.01, 1993. 

[2]  P T Curtis (ed), “CRAG Test Methods for the 

Measurement of the Engineering Properties of 

Fibre-reinforced Plastics”, Royal Aircraft 

Establishment, Technical Report 88012, February 

1988. 

[3]  ISO-14125, “Fibre-reinforced Plastic Composites- 

Determination of Flexural Properties”.2001. 

[4]  http://www.woodheadpublishing.com/en/book.aspx

?bookID=7. 

[5]  JIS K 7055. Testing method for flexural properties 

of glass fibre reinforced plastics. Japanese 

Standards Association; 1987.  

[6]  U. A. Khashaba and M. A. Seif, “Effect of different 

loading conditions on the mechanical behaviour of 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T



[0/±45/90]s woven composite”, Composite 

Structures, Vol. 74, 2006, pp. 440-448. 

[7]  ANSYS Reference Manuals, 2011. 

[8]  Issac M. Daniel and O. Ishai, “Engineering 

Mechanics of Composite Materials”, Oxford 

University Press, 2006. 

[9]  S.P.  Timoshenko and J.N. Goodier, “Theory of 

Elasticity”, McGraw Hill International edition, 

1970. 

[10]  S.P.  Timoshenko and S.W. Krieger, “Theory of 

Plates and Shells”, McGraw Hill International 

edition, 1976. 

[11]  C.S. Krishna Murthy, “Finite Element Analysis”, 

Tata McGraw Hill Publishing Company Ltd., 2002. 

[12]  O.C. Zienkiewicz, “The Finite Element Method”, 

Tata McGraw Hill Publishing Company Ltd., 2003. 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T


