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Abstract: We formulate a mathematical model that governs 

operations of many engineering systems particularly the 

Ceiling fan to explain the fluid flow between the fixed 

impermeable and the porous rotating disks in the presence of 

a transverse magnetic field. The model is based on the 

continuity and the Navier-stokes equations which are reduced 

into set of coupled ordinary differential equations through 

transformation by similarity variables. The coupled ordinary 

differential equations are solved using perturbation 

techniques. The results for the velocity profiles and the fluid 

pressure distribution are displayed graphically showing the 

effects of various parameters. The graphical results of the 

shear stress are presented and discussed. 
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INTRODUCTION 

 The problem of laminar flow between two parallel disks 

stemming from both practical interests (e. g. ocean 

circulation motion and turbo machinery applications) and 

theoretical interests (e. g. exact solutions of the Navier-

stokes equations in certain geometric limiting cases) has 

received much attention over the years. In modern times, 

the theory of flow through convergent- divergent channels 

has many applications in aerospace, chemical, civil, 

environmental, mechanical and bio-mechanical engineering 

as well as in understanding rivers and canals. Due to the 

complexity of a real fluid flow, certain assumptions are 

made to simplify the mathematical convenience. Some of 

the basic assumptions are, the fluid is ideal (i.e. without 

viscosity for mathematical convenience). In situations 

where the effect of viscosity is small, this assumption often 

yields results of acceptable accuracy although where 

viscosity plays a major part (e. g. in boundary layers), the 

assumption is clearly untenable. The flow is steady (i.e. the 

flow parameters do not change with time). The fluid is 

incompressible. 

 We consider the flow between a fixed 

impermeable disk and a porous rotating disk (Fig.(a)) both 

being immersed in a large body of fluid. Motion of the 

fluid is induced by the rotation of the porous disk. This 

study is interesting in its own right and also based on its 

applicability. 

 In the sequel, the following notation will be used: 

L= distance between the two disks.  

r = Radius of each disk. 

= Angular speed of the rotating disk. 

 = Measure of the angular speed or momentum of the 

rotating porous disk. 

W= Suction velocity at which fluid is withdrawn from the 

rotating disk (injection if W is Negative). 

u, v, w = Velocity components in the directions r,  and z 

respectively. 

 f, g, p are the similarity variables used to reduce 

the Navier-stokes non-linear partial differential equations 

into a system of non-linear ordinary differential equations. 

For fixed impermeable disk, u=0, w=0, v=0 while for 

porous rotating disk, u=0, w=W, v=rThe disks are 

separated by a distance L which is small compared to their 

radii. 

 The direction of fluid flow as shown by the arrows 

in the figure (a) is heading towards the porous disk which 

is rotating with a constant angular speed . The suction 

velocity is assumed to be constant and equal to W. The 

rotation speed is given by , where is the angular speed 

of the rotating disk and the parameter  is a regulator which 

controls rotation of the disk (0 ≤ ≤ 1). If  = 0, then there 

is no rotation but for  > 0, rotating occurs. 

 The question of existence and uniqueness of 

solutions in the similarity formulation has been raised [16]. 

Moreover, a question on the behavior of the flow between 

the two disks and in particular near the stationary disk as 

the speed of the 

 
 
Fig.(a) Physical model representing laminar flow between parallel disks. 

 

rotating disk approaches infinity has not been satisfactorily 

addressed in this type of formulation. The simplified 

equations that govern the flow over an infinite rotating 

disk, is studied by Kuiken [12] and Kelson et al. [10]. 

Theoretical work on this class of flows has been 
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undertaken mainly in the framework of similarity solutions 

because the assumption of self-similarity to reduce Navier-

stokes equations from partial to ordinary differential 

equations greatly simplifies the analysis. Stuart [23] 

showed that the effect of suction is to thin the boundary 

layer by decreasing the radial and azimuthal components of 

the velocity while at the same time increasing the axial 

flow towards the disk at infinity. Turkyilmazoglu [24] 

extended the classical von-Karman problem of flow over a 

rotating disk to account for compressibility effects with 

insulated and isothermal wall conditions. He used an 

exponentially decaying series method to find the solution 

of the steady laminar flow of an incompressible, viscous, 

electrically-conducting fluid over a rotating disk in the 

presence of a uniform transverse magnetic field. 

 The study of the motion of a viscous 

incompressible rotating fluid is of considerable interest in 

recent years due to its wide applications in cosmical and 

geophysical fluid dynamics. The research papers dealing 

with rotating fluid have appeared, for example, Vidyanidhi 

and Nigam [26], Puri [20], Jana and Dutta [8]. In a recent 

paper, Mazumder [15] and in a note, Ganapathy [6] gave an 

approximate solution of the oscillatory couette flow 

between two infinite parallel plates in a rotating system 

under boundary layer approximations. Pearson [19], Lance 

and Rogers [13] obtained the numerical solution of this 

problem. Gaur [7] discussed the same problem by 

considering the effect of porosity. Khare [11] studied the 

problem of axisymmetric steady flow of a viscous 

incompressible fluid between two co-axial circular disks, 

one rotating and the other stationary with uniform suction 

at stationary disk for electrically conducting viscous fluid 

in the presence of a transverse magnetic field. Purohit and 

Patidar [21] studied the steady flow and heat transfer of a 

viscous incompressible fluid between two infinite rotating 

disks for small Reynolds number, where rate of suction of 

one disk is different from the rate of injection at the other 

disk. Recently Das and Aziz [4] extended the problem 

investigated by Purohit and Patider [21] including 

transverse magnetic field where rate of suction in one disk 

is different to that the rate of injection at other. Sibanda and 

Makinde [22] investigated the heat transfer characteristics 

of steady MHD flow in a viscous electrically conducting 

incompressible fluid with Hall current past a rotating disk 

with ohmic heating and viscous dissipation. They found 

that the magnetic field retards the fluid motion due to the 

opposing Lorentz force generated by the magnetic field. 

Turkyilmazoglu [24] concluded the exact solutions for the 

incompressible viscous magnetohydrodynamic fluid of a 

rotating disk flow. 

 The effects of an axial magnetic field applied to 

the fluid with Hall effects are studied by Attia and Aboul-

Hassan [1]. Maleque and Sattar [14] have considered the 

effects of variable fluid properties on laminar boundary 

layers, namely the density , the viscosity and the 

thermal conductivity to flow due to a porous rotating disk. 

The effect of temperature dependent viscosity on the flow 

and heat transfer along a uniformly heated impulsively 

rotating disk in a porous medium is discussed by Attia [2]. 

Osalusi and Sibanda [17] studied the effects of variable 

properties with magnetic effect. Barik et al [3] considered 

hall effects on unsteady MHD flow between two rotating 

disks with non-coincident parallel axes. 

 Osalusi [18] analyzed the combined effects of slip 

and thermal radiation to the MHD flow and thermal fields 

over a rotating single disk. The unsteady Couette flow 

between two infinite horizontal parallel plates in a rotating 

system under boundary layer approximation is studied by 

Das et al. [5]. Kavenuke et al. [9] considered the modeling 

laminar flow between a fixed impermeable disk and a 

porous rotating disk both being immersed in a large body 

of the fluid. 

 

Model and Analysis: Fig.(a) depicts a system of porous 

rotating disk and a stationary disk both being immersed in 

a large fluid body. Fluid motion is set up by both rotation 

of the porous disk and suction (or injection) of the fluid 

itself. 

 We use the cylindrical polar coordinates (r, , z) 

and the corresponding velocity components by (u, v, w). 

However, the angle  will not appear in our analysis 

because of rotational symmetry. The plane z = L rotates 

about the z-axis with constant angular velocity  and the 

suction velocity is given by W. 

 In order to neglect the end effects, we assume that 

the gap L is very small compared to the radii of the disks 

that is, L<< r (0 <L<< r). 

 The equations governing the motion of an 

incompressible viscous fluid arise from conservation of 

mass principle and the momentum principle. 

From the conservation of mass principle, we have  

 1
0

ru w

r r z

 
 

 
                                                             

(1) 

From the momentum principle and ignoring gravity we 

have the Navier-stokes equations, one for each co-ordinate 

direction 

22 2 2

0

2 2

1 B uu u P u u u v
u w

r z r r r r z r




 

       
         

       
  

                                                                                                

(2) 

22 2

0

2 2

B vv v v v v uv
u w

r z r r r z r






      
       

      
                                                        

(3) 

2 2

2 2

1 1w w w w w P
u w

r z r r r z z




      
     

      
         

(4) 

 The small gap L between the two disks allows us 

to neglect the behavior of the flow around the edges. 

Therefore the bounding conditions to be specified are those 

applicable to velocity components at both disk surfaces and 

not the edges. 
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 For the velocity, it is assumed that the no slip 

condition applies at the surface of the disks.  

The boundary conditions are 

     

     

,0 ,0 ,0 0 0

, 0, , , ,

u r v r w r at z

u r L v r L r w r L W at z L

    


     

           

(5) 

 Since the fluid is incompressible, it is possible to 

define the stream function from the governing continuity 

equation in two dimensions. This enables us to solve the 

continuity equation (1) in the familiar way by setting, 

1 1
,u w

r z r r

  
  

 
                                                    

(6) 

and by defining a dimensionless normal distance from the 

disk. 

z z

L W



                                                                          

(7) 

 

We assume a similarity transformation of the form 

   2,r n r f W                                                       

(8) 

Equations (6) and (8) yield the expression for the radial and 

tangential velocities 

   , 2u r f w Wf                                            

(9) 

For the axial velocity and pressure variables, we assume 

that, 

   2 21
,

2
v r g p r A P                            

(10) 

The corresponding boundary conditions for the functions f 

and g are  

     

     

0 0, 0 0, 0 0

1
1 0, 1 , 1

2

f f g

f f g 

    

    


                                

(11) 

Substituting (9) and (10) into equations (2) to (4), we 

obtain 

           
2 2 1

2f f f g A f Mf
R

              

  

                                                                                              

(12) 

           
1

2 f g f g g Mg
R

                     

(13) 

       2 2
4

W
P W f f f

L


                        

(14) 

Where, the primes denote differentiation with respect to 

he parameter 

2W
R





is the Reynolds number and A 

is an arbitrary constant, 

2

0B
M







is magnetic parameter, 

 is the electrical conductivity, 0B is the magnetic 

induction and  is the density. 

 

 

Differentiating equation (12) with respect to 

           
1

2 f f g g f Mf
R

                      

(15) 

Equation (13) can be written as 

           
1

2 f g f g g Mg
R

                    

(16) 

 Our main focus is on solving the two coupled non-

linear ordinary differential equations (15) and (16), subject 

to the boundary conditions 

     

     

0 0, 0 0, 0 0

1
1 0, 1 , 1

2

f f g

f f g 

    

    


                                

(17) 

Though the transformation has provided a set of ordinary 

differential equations, a closed form solution is still not 

possible. Consequently, we apply the perturbation 

technique. Treating R as a perturbation parameter, 

substituting the expansions into 
2

0 1 2

2

0 1 2

.................

.................

f f Rf R f

g g Rg R g

   


    

                       

(18) 

equations (15) and (16) transforms the intractable original 

problem into a sequence of simple ones. By collecting 

terms of the same order, we have 

 0 0f                                                                     

(19) 

  0g                             

(20) 

           0 0 0 0 1 02 f f g g f Mf             
                                                                                 

(21) 

           0 0 0 0 1 02 f g f g g Mg           
                                                                                 

(22) 

Subject to the boundary conditions 
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           

           

0 0 0 0 0 0

1 1 1 1 1 1

1
0 0 0 0, 1 0, 1 , 1

2

0 0 0 0, 1 1 1 0

f f g f f g

f f g f f g




        


       
                                                                                              

(23) 

The solution of (19) to (22) under the given boundary 

conditions yields the following 

  3 2

0

3

2
f                                                        

(24) 

 0g                                          

(25) 

 
   5 26 3 27

1 2
1

3 26

70 120 120 6 2

MM B B
f

   



     

                                                                                

(26) 

 
5 4 3

1

3 10

5 4 6 60

M M
g

  
 

 
    

 
        

(27) 

Where,  2

1

3 6 3
3 2

7 5 20

M
B M 


    , 

2

2

8 6 3 2

70 20 30

M M
B

 
     

 

Fluid pressure distribution: 
Integrating equation (14) from 0 to n and applying the 

boundary conditions, we obtain 

       

   

2 2 2, ,0 2 0

2
0

P r P r W f f

W
f f

L

 




     

    

          

(28) 

   
   2

2

, ,0 1

2

P r P r
P f f

W R


 


  


        

(29) 

Shear stress:  
The action of velocity in the fluid adjacent to the disks 

tends to set a tangential shear stress which opposes the 

rotation of the disk. The tangential stresses at the rotating 

porous disk are given by 

 
2

1z

v r
g

z W



 

 
 


                        

(30) 
2

1
2

z

r RM

W


 


  
  

 
                                     

(31) 

 
2

1zr

u r
f

z W


 

 
 


          

(32) 

2 2

1 2

3 6 3 2
3

5 4 6
zr

r M M
R B B

W

 


    
        

  
                                                                                

(33) 

 

Result and Discussion: Insight into the physical 

occurrences within the flowing fluid can be obtained by a 

study of velocity profiles. The distributions of the normal 

velocity (w), the radial velocity (u) and azimuthal velocity 

(v) are plotted as a function of eta (). Also, the pressure 

and shear stress variation are represented graphically. 

 In figure 1, 2 and 3, the radial velocity profile is 

plotted against  for different values of suction velocity 

(W) (or angular speed of the porous rotating disk ()), the 

radius of disk (r) and Reynolds number (R) respectively. In 

this case, rotation of porous disk is constant, it is observed 

that the radial velocity profile remains negative throughout 

the region between the fixed impermeable disk and porous 

rotating disk and value becomes zero at the both disks. It 

decreases exponentially with increasing  from the fixed 

impermeable disk, reaches its minimum value and 

increases towards the porous rotating disk. It is also 

concluded that the radial velocity profile decreases with 

increasing the suction velocity (W) and the radius of the 

disk (r) in figure 1 and 2 respectively, where as, in figure 3, 

an increasing in Reynolds number causes increase in the 

radial velocity. 
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Fig.1. Radial velocity for various values of suction velocity (W)  & 

angular speed of disk () 
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Fig.2. Radial velocity for various values of radius of disk (r) 
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Fig.3. Radial velocity for various values of Reynolds number (R) & 

angular speed of disk ()  
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Fig.4. Radial velocity for various values of magnetic parameter (M) 

 

 Figure 4 and 5, represent the radial velocity 

profile for different values of the magnetic parameter (M) 

and the rotation of the porous disk () respectively. It is 

observed that in both figures 4 and 5, the radial velocity 

profile decreases in the region    0 ≤  ≤ 0.5 with increasing 

M and  and after that it increases towards the porous 

rotating disk. 

 In figure 6, 7, and 8, the azimuthal velocity profile 

(v) is plotted against for different values of the suction 

parameter (W), the radius of the disk (r), and the rotation of 

the porous disk () respectively. It is observed that the 

azimuthal velocity profile 
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Fig.5. Radial velocity for various values of rotation of the disk () 

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Fig.6. Azimuthal velocity for various values of suction velocity (W)  & 

angular speed of disk ()

 

increases continuously with increasing  towards the 

porous rotating disk. In fig. 6 and 7, it decreases with 

increasing suction velocity and the radius of the disk 

respectively in the region 0 ≤  ≤ 0.14 and after that it 

increases. Similarly in figure 8, the azimuthal velocity 

profile decreases with increasing the rotation of the porous 

disk in the region 0 ≤  ≤ 0.28 and then it increases. 
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Fig.7. Azimuthal velocity for various values of radius of the disk (r) 
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Fig.8. Azimuthal velocity for various values of rotation of the disk ()

 

 Figure 9, represents the azimuthal velocity profile 

against  for different values of Reynolds number. It is 

observed that an increase in Reynolds number causes a 

decrease in the azimuthal velocity profile. 

 In figure 10, the azimuthal velocity is plotted 

against for different values of the magnetic parameter 

(M). The azimuthal velocity increases continuously with 

increasing  and reaches its maximum value at the porous 

rotating disk (1. The value of v remains positive for 
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M=0 and for M>0, the value of v remains negative at the 

fixed impermeable disk and tends to positive value towards 

the porous rotating disk. It is also concluded that an 

increase in M results a decrease in v. 

 Figure 11, shows the normal velocity profile (w) 

against  for different values of suction velocity (or 

angular speed of the porous rotating disk ()). It is seen 

that the normal velocity profile increases with increasing  

and reaches maximum value at the porous rotating disk. It 

is also observed that an increase in the suction velocity 

results increase in the normal velocity profile. 
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Fig.9. Azimuthal velocity for various values of Reynolds number (R) & 

angular speed of disk () 
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Fig.10. Azimuthal velocity for various values of magnetic parameter (M) 
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Fig.11. Normal velocity for various values of suction velocity (W)  & 

angular speed of disk ()
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Fig.12. Normal velocity for various values of magnetic parameter (M)  

 

 In fig. 12 and 13, the normal velocity profile is 

plotted against  for different values of the magnetic 

parameter and the rotation of the porous disk. In the both 

figures, the normal velocity profile increases continuously 

with increasing . The normal velocity profile increases 

with increasing the magnetic parameter and the rotation of 

the porous disk respectively. 
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Fig.13. Normal velocity for various values of rotation of the disk () 
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Fig.14. Fluid pressure distribution for various values of suction velocity 

(W)  & angular speed of disk ()

 

 Figure 14 and 15, show that the fluid pressure 

distribution (P
*
) is plotted against  for different values of 

the suction velocity and the Reynolds number respectively. 

In both figures, the fluid pressure distribution increases 

rapidly from the fixed impermeable disk with increasing 

and reaches its maximum value and falls down towards 

the porous rotating disk. In figure 14, the fluid pressure 

distribution increases in the region 0 ≤  ≤ 0.96 with 

increasing the suction velocity and after that the fluid 

pressure distribution decreases towards the porous rotating 

disk, whereas, in figure 15, the fluid pressure distribution 
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decreases through out the region with increasing the 

Reynolds number. 
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Fig.15. Fluid pressure dist. for various values of Reynolds number (R) & 

angular speed of disk () 
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Fig.16. Fluid pressure dist. for various values of magnetic parameter 

(M)  

 

 In figure 16 and 17, the fluid pressure distribution 

is plotted against  for different values of the magnetic 

parameter and the rotation of the porous disk respectively. 

In both figures, it increases sharply with increasing , 

reaches its maximum value and falls down rapidly towards 

the porous rotating disk. It is also observed that the fluid 

pressure distribution increases from the fixed impermeable 

disk with increasing the magnetic parameter and the 

rotation of the porous disk respectively in both figures, but 

after  > 0.48, the fluid pressure distribution decreases 

towards the porous rotating disk in both figures.  
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Fig.17. Fluid pressure dist. for various values of rotation of the disk ()
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Fig.18. Effects of rotation of the disk () on Wall and Radial shear 

stress 

  

 Figure 18 and 19, show the effects of and M on 

the wall shear stress and the radial shear stress respectively. 

In both figures, the wall shear stress increases steadily and 

the radial shear stress decreases slightly as increasing and 

M. 

 Figure 20 and 21, show the effects of R and W on 

the wall shear stress and the radial shear stress respectively. 

In figure 20, the wall shear stress decreases slightly and the 

radial shear stress decreases sharply at R=0.2 and after this 

, it decreases slightly as increasing R, whereas, in figure 

21, both the wall shear stress and the radial shear stress 

increase exponentially as increasing W. 
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Fig.19. Effects of magnetic parameter (M)  on Wall and Radial shear 

stress 

 

 

Fig.20. Effects of Reynolds number (R) 

 

on Wall and Radial shear stress
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Fig.21. Effects of suction velocity (W) on Wall and Radial shear stress 
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Fig.22. Effects of radius of the disk (r) on Wall and Radial shear stress 

 

 Figure 22, shows the effects of r on the wall shear 

stress and the radial shear stress. The wall shear stress 

increases slowly and the radial shear stress increases 

sharply as increasing r. 

 

CONCLUSIONS:  

The presence of fluid in flow between the two disks 

guarantees the absence of cooling and in general, cooling is 

felt outside the region and in front of the porous rotating 

disk due to suction and fluid out flow. This effect can 

easily be observed from a ceiling fan operation and other 

fan systems used in our homes. 

 This study presents a mathematical model in 

which the electrically conducting fluid is flowing between 

the fixed impermeable disk and the porous rotating disk in 

the presence of transverse magnetic field. The main 

findings can be summarized as: 

1. The radial velocity profile decreases with increasing W 

and r, whereas, it increases with increasing R. 

2. In positive sense, the azimuthal velocity profile 

increases and in negative sense, v decreases with 

increasing W, r and whereas, it decreases as 

increases in R and M. 

3. Increasing W, M and  leads to an increase in the 

normal velocity profile. 

4. An increase in W and R causes an increase in the fluid 

pressure distribution for W and a decrease for R. 

5. The wall shear stress increases as the increasing W, M, 

 and r, whereas, it decreases as the increasing R. 

6. Increasing , M and R decreases the radial shear stress 

and increasing W and r increases rapidly the radial 

shear stress. 
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