

 Niveda Pareek

 Department of Computer Science and Technology

 Central University of Punjab

 Bathinda

, India

Satwinder Singh

 Department of Computer Science and Technology

 Central

University of Punjab

 Bathinda

, India

I.

INTRODUCTION

Cleanroom is derived from the method used to fabricate
semiconductor. It combines many of the formal ways and
software package quality improvement approaches. In the
study [1] bulk fixing coding issues were analysed which

gave
insight into the virtual world of software engineering. This
defines quality of a software system is generally outlined by
its source code. Software evolves unendingly; it gets

modified
and enhanced as new necessities perpetually arise. If proper
time is not dedicated on improving source code, it becomes
filthy

and its quality will decrease without any doubt. After
that key importance was given to refactoring which improves
the existing code in such a manner that external user will

never get to know about what is happening inside the software
which

makes it more interesting to explore. As search goes
deeper in journals then it was found

that

most of the cost is
spent on software maintenance rather than software
development which in turn

inspired to know the factors and
causes involved in this concept. It was analysed that all multi-
national companies participate and spend in big projects to
revise their internal coding section i.e. to apply refactoring
operations using some tools and hire people in bulk for the
same[2]. It is not secured

that refactoring will always improve
the code but still it is a part of present software development
practices. This study deals with the same objective within the
same context. Whenever

it comes to improve the quality of
code, some techniques are applied. For this data can be chosen
in bulk and show

results in every possible way.

Next step is to analyse

how these refactoring can
mould

coupling and cohesion characteristics, rules

can be

set
to optimize their usage for improvement. There are several
findings which describe where and

how these rules can be

applied.

A survey is also a good alternative to know about the
results or findings of this topic. So with these numerous
options, this concept can be easily defined and analysed .It
should be done in order to find out the results according to the
objective. Many findings are there which describe conditions
in which if refactoring is applied well then it can improve
specific dimensions of coupling and cohesion. Guidelines for
applying the refactoring under these conditions are composed
and validated on

an open source software system regarding its
quality. Individual

workmanship,

ordered

development,
individual unit testing, informal coverage testing, unknown

 dependability, informal

style

were replaced by peer reviewed
engineering,

progressive

development, team correctness
verification,

applied math usage testing,
measured

dependability, disciplined engineering specification

 and style

respectively.

II.

LITERATURE REVIEW

 Cleanroom software development is

a software package
development method that avoids package defects by exploiting
formal strategies

of development and a rigorous scrutiny
process.

If

defect

prevention is the point of concern

rather than
defect removal then cleanroom software engineering

can be
considered as high quality software development method
along with reliability.

Quality of

software product

can be
improved

by regularly refactoring it which is

defined as

“a
change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing
its observable behaviour” [1]. In other words,

refactoring

can
be applied to improve software in terms of its design,
understand ability as well as it will make it easier to find
errors which will in turn help to program faster[3]

. Single
refactoring can make small changes or sometimes decrease the
quality but when applied in block,

it significantly increases the
quality. Unfortunately it is not an assurance that quality will
always increase with refactoring technique.

Major portion of
total life cycle cost of a system is consumed by software,

 when cost is calculated as total systems cost along with
programming resources consumed. After reviewing various
studies[4][5][6]

about software quality and maintenance,

it
was observed that out

of

total resources of the system

and
programming groups, a lot of them are used by maintenance
and enhancement.

As per consideration of management,
maintenance and enhancement are somewhat more important
than new application software development[7]. In
maintenance and enhancement, technical problems

tend to be
more vital than those of management. Demand for

Effects on Software Quality with Clean Room
Software Coding

Abstract- Software engineering and its maintenance is the
most emerging topic now-a-days. As people are becoming more
tech-savvy so with improvements in technology and in turn
improvement in the internal working of the code and interface is
new demand as well as prominent area of research. Software
maintenance epitomize cost factor from customer point of view
therefore developer tends to showcase software as brand new
entity rather than improvised one. Defect avoidance is the key
area rather than defect removal here.

Keywords— Clean room processing, Coupling and cohesion,
Refactoring, Software Maintenance

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

1

intensification and extension by an user constitute the most
ponderous management problem area[5]. Usually,
management problems associated with maintenance grabs
more attention. To collect more detailed management
information in practical scenario, maintenance work should be
categorized. Systems should be in such flexible state that is
capable to handle various types and tasks of maintenance and
enhancement. Refactoring restructures a program in such a
manner that changes to the program can be done in much
easier way although it do not change behaviour of a program.
Complicated changes to a program need both refactoring and
additions[8] such as extracting a reusable element, improving
consistency among components, supporting the unvaried
structure of an Object-Oriented Application framework. One
among the explanations why programs are not refactored is
that any type of changes to the program runs the danger of
introducing defects into the program which might be a lot
dangerous than what is expected. Research is still going on to
apply refactoring without changing the program's behaviour.
Best possible way to automate refactoring can be considered
as to ensure that defects are never introduced in the program.
All applied refactoring will improve design of a program is
not always true. On the contrary, applying arbitrary
refactoring can corrupt software design instead of improving
it, preserving its behaviour as per the definition [9]. Outcome
of a refactoring are meaningful modifications which make the
program easier to refine or reconstruct.

To deal with these complexities, there is an urgent need for
techniques to scale back software system complexity by
slowly raising the internal software system quality.
Restructuring is the research domain that addresses such
issues. Restructuring[10] is defined as “the transformation
from one representation to another at the same relative
abstraction level, while preserving the subject system’s
external behaviour (functionality and semantics)”. A
restructuring modification can appear as code altered to
enhance its design in the trivial sense of structured design.
Restructuring usually does not involve modifications and
updates due to new requirements although it creates new
versions that propose changes to the subject system. Many
aspects of the system can be improved as restructuring lead to
better observations of underlying subject of the system.

Refactoring activities analyze where the computer code
ought to be refactored , which refactoring(s) should be
imposed to the known places, assures that applied refactoring
maintains behavior of the system, application of refactoring,
analyze effect of the refactoring on quality measures of
computer code such as quality, understandability,
comprehensibility, maintainability, method productivity, cost,
effort, maintain consistency between restructured computer
code and other software artifacts such as documentation,
design documents, requirements specifications, tests, etc.
These steps are applied on real time software, embedded
software and safety critical software. Above mentioned
categories are important open issues to be solved in future.

Refactoring can be addressed in more consistent, scalable,
general and versatile method by identifying need for process
and methods. In programming, the key plan is to spread
instance variables and functions across the class in order to
make the code more comprehensible, reusable and
maintainable[11]. It somehow reach to the extent where it can
be said that for small nesting levels, if statement is sometimes

a little quicker than the equivalent virtual methodology. One
might prefer an if-statement over a virtual method for
conditions with nesting level 4 or less[10]. A validated reason
behind low maintainability, low reuse, high complexity and
erroneous behavior of the programs is design flaws introduced
in initial stages of development or throughout system
evolution. One of the taboo research objectives is to preserve
the correct system design. However, modifications, detection
and correction of design flaws may be complicated and
resource-consuming task for huge systems subject to timely
modifications. Quality of object systems can be improved by
use of metrics for quality estimation and automated
transformations[12].In general, both aspects have been treated
independent of each other. Further these efforts can be used to
observe the interaction of particular modification and metrics
in an orderly manner to suggest the use of modifications that
may be helpful in improving quality as calculated by metrics.
The answer to the question, Can metrics help to bridge the gap
between the improvement of object oriented design quality
and its automation can be yes or no. It can be yes; the reason
can be defined as automation of quality improvement can be
done with the use of metrics. Metrics can help to automate a
large part of whole process hierarchy of detecting flaws and
rectifying them. The answer can be no as the results of some
findings show that a prescription cannot be executed without
validation of a programmer or designer. Although it cannot
determine all aspects to permit such type of automation. It is
clear that refactoring can be used to restructure software
systems; it is not clear how to use them to enhance specific
quality attributes that indicates a good design.

In the context of improving [13], it is assumed that
coupling and cohesion characteristics may serve as indicators
for the optimal distribution of responsibilities over the class
hierarchies. Thus, coupling and cohesion is a less ambitious
goal than refactoring which will improve the design .Cohesion
corresponds to the degree to which elements of a class belong
together and coupling is the strength of association established
by a connection from one class to another [13]. Some
conditions will improve specific coupling and cohesion
dimensions by applying refactoring. It is identified that
specific applications of Move Method, Replace Method with
Method Object, Replace Data Value with Object and Extract
Class are beneficial. However, guidelines for these methods
can be inadequate. Specific application of Extract Method was
harmful for cohesion so it is not true that every practice will
give the expected result. Being a researcher it is to be taken
into account that some findings and experiments will lead to
the desired point and some will take it to some other aspect
which in turn can be considered as new research area to work
on. Many findings made above research area very vast and
allow dealing with new errors so that findings can be defined
and analyzed in order to improve knowledge and in future new
framework can be proposed.

It is experienced that it is possible to achieve quality
enhancements with restricted refactoring efforts by exploiting
the results from coupling/cohesion impact analysis. Analysis
and resolution of a limited set of refactoring opportunities are
known to enhance the concerned quality attributes which can
be considered as a restriction of this effort[14]. Certainly
refactoring will make software go more slowly, but it also
makes the software more flexible to performance tuning[12].
Now after refactoring, quality of code can be improved by

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

2

maintenance of the software which is one of the most crucial
and costly phase of the software lifecycle since so long. Out of
total cost of developing the software, maintenance costs can
be more than 40 per cent. Software lifecycle is very long that
is why maintenance cost is high. Large projects may take
several years to complete and take more time to be
maintained. It is highlighted fact that software systems often
survive much longer than the developers analyzed which can
be a good sign from a developer’s point of view. Software is
easy to modify during maintenance as compared to
hardware[2]. Software maintenance changes are more
extensive and more frequent than maintenance performed on
less mutable systems. The assumption that these changes may
add defects to the system is increased by the fact that high
personal turnover in software industry increases the
probability of non-availability of original developer at the time
of consultation and long process of development. To analyze
reasons behind the choices made by the developers during
design and implementation is the major problem in
maintaining a huge system[14]. As the whole idea behind
these studies is mainly to improve understandability and
modifiability by proposing refactoring framework and make
the code cheaper to modify as well as easier to understand.
However, this tip can also be used for security, versatility,
usability, performance and more. Functionalities are termed as
goals while qualities and the factors affecting them are termed
as soft-goals[2]. Precisely, they can be categorized into
resources and tasks. The dependencies among goals, soft-
goals, tasks and resources can be represented by a soft-goal
interdependence graph. Functionality goals mainly focus on
performance and code complexity of soft goals concerned
with the set of software metrics. Within quality space,
modifications on the state of a program measures refactoring.
By further monitoring the process of developing a new
software from scratch[10], it is coined that to balance
productivity goal with refactoring goal, quality space should
be measured along with progress. Different priority at
different development phases can determine the region for
quality space that ought to be adjusted dynamically during the
software evolution i.e. development. Refactoring changes are
invertible if no functionality change happens because these are
non-functional.

Program refactoring is a method to improve the
maintainability of a program. Although the concept itself is
considered to be effective, there are few quantitative findings
of its impact to the software maintainability. It is sometimes
difficult to judge whether the refactoring in software should be
applied or not without knowing the effect accurately. Effect of
program refactoring on maintainability is measured by a
quantitative evaluation based on coupling metrics to determine
its effect. Degree of maintainability enhancement can be
evaluated by comparison i.e. comparing the coupling before
and after the refactoring. Then bad smell is introduced which
is defined as a program characteristic which alludes to the
necessity of program refactoring[6]. Duplicate code can be
improved by unifying the duplicated parts, which is the main
reason why duplicate code is considered as bad smell. A class
that does not do anything specific is termed as lazy class
which is also bad smell. Refactoring candidates’ analyze the
source code to detect bad-smell. Code cloning i.e. copy
pasting the code is also a good alternative to achieve design
goals but it carries the danger of code quality within time
frame. However, deciding which clones to be eliminated is a

cumbersome task. Modifying a clone needs effort, cost, and
risk that such a change contains but all refactoring are not
worth it because external refactoring is needed to serve the
purpose[10]. Furthermore, cloning should not be refactored at
all if it fulfills a useful design role. When a developer finds the
same research work as the one under consideration and copy-
paste the code then software clones come into existence. The
step by step procedure of cloning is detection of clone,
identification of clone refactoring cases and clone instances
that are not refactored, extraction of features from clone
instance and assessment of classifier’s performance.
Empirical proofs provide evidence that cloning is not always
harmful and makes it a major engineering tool. Cloning is
often used as a convenient design shortcut to reuse an existing
solution by duplicating and then specializing code fragments
within a software system. An easy way to reuse existing code
is by cloning in which code is duplicated and then those parts
are specialized within the system. However, sometimes bugs
are introduced in the system due to cloning and create long-
term software maintenance issues.

 A question arises after learning about these findings
that does refactoring improve software quality. System has to
undergo modification, improvement and enhancements to
handle evolving software requirements. To evaluate
effectiveness of refactoring which is used to enhance software
quality, open source system detect changes referred as
refactoring. When the development team performs refactoring
then analysis can be made on how metrics of open source
system can be affected irrespective of the reasons that led to
that decision. It sometimes leads to change of certain metrics
to the worse.

In the agile community[14] it is accepted that refactoring
contributes to confine the quality of source code and
incorporates a positive impact on the maintainability and
comprehensibility of a software system. Code that is
frequently refactored is assumed to be correct, easier to
understand and align to new needs. From economic point of
view, refactoring is found to have beneficial impacts on
maintenance activities and other software quality attributes
thus it is highly motivated. It can be seen that this work
contributes to a far better understanding on the consequences
of refactoring on code quality as well as code development in
industrial and agile development environment. It particularly
deals with code maintenance. It suggests that refactoring
increases rather than decreasing the code quality, productivity
and improves quality factor. All findings rely on industry
based evidences. All these factors are measured using
common internal quality attributes and reduce code
complexity along with coupling but increases cohesion.

III. RESEARCH GAP

Literature
name and author

Work done by
author

Research gap
in Literature

Bulk fixing
coding issues and
its effects on
software quality
by Gabor Szoke,
Gabor Antal,
Csaba Nagy,
Rudolf Ferenc,

They studied
thousands of
refactoring commits
during refactoring
period. Rather than
fixing code smells
indicated by metrics
or automatic smell

It is not
specified What
should be
refactored. How
it can be done.
Can it be
automated, what
can be the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

3

and Tibor Gyimo detectors, developers
preferred to fix main
coding issues.

shortcomings?
One more point
is, code quality
will never
improve if
developers do not
refactor the
source code time
to time. Whole
quality of
software product
cannot be
affected by a
single
refactoring.
Moreover,
sometimes it may
have negative
impacts.

Representing
and Using Non
functional
Requirements: A
Process-Oriented
Approach By
John Mylopoulos,
Lawrence Chung,
and Brian Nixon

This study offers
a framework to
embed non-
functional
requirements into
software
development process
especially for
information systems.

Implementati
on of prototype is
still under
process for this
framework. It
needs to be
applied to other
non-functional
requirements too.

Rationale
Support for
Maintenance of
Large Scale
Systems By Janet
E. Burge and
David C. Brown

Software
Engineering Using
Rationale system
abbreviated as
SEURAT is
developed. The
SEURAT system
will make
modifications to the
software; maintainer
can make use of this
software
development tool.

In
enhancement of
the study,
evaluation of the
choices made and
their impact
provides support
to the maintainer
to view reasons
for the same.
Further, as per
our findings this
study is found not
to be suitable for
large scale
systems.

Software
refactoring
guided by
multiple soft-
goals By Yijun
Yu John
Mylopoulos Eric
Yu

A case study in
this work has shown
that transformation
on the state of
program measures
refactoring in the
quality space.
Modifications to the
state of the program
without changing the
state of the data are
non-functional
requirements.

The scope for
improvement of
the study is by
balancing
refactoring goal
with productivity
goal in order to
measure the
quality space
along with
progress. During
software
development
quality space
should be
adjusted
dynamically and

as per the
requirements.

Refactoring -
Improving
Coupling and
Cohesion of
Existing Code

Bart Du Bois
and Serge
Demeyer and Jan
Verelst

It is
demonstrated that it
is possible to
achieve quality
improvements with
restricted refactoring
efforts by exploiting
the results by
coupling/cohesion
impact analysis.
Concerned quality
attribute can be
improved by
analysis and
resolution of
refactoring
activities.

Guidelines for
improvement of
cohesion and
coupling are
insufficiently
specific.

Specific
extract method
was not found to
be useful for
cohesion.

Recommendin
g Clones for
Refactoring
Using Design,
Context, and
History By Wei
Wang and
Michael W.
Godfrey

Code can be
reused by copying
the existing code and
improving those
parts in the software
system. However,
cloning may
introduce bugs and
cause software
maintenance issues.

Code
management can
be improved by
better resource
allocation.

A Case Study
on the Impact of
Refactoring on
Quality and
Productivity in an
Agile Team By
Raimund Moser,
Pekka
Abrahamsson,
Witold Pedrycz,
Alberto Sillitti
and Giancarlo
Succi1

Refactoring
increases the
productivity and
quality factors of
code rather than
decreasing it.
Empirical evidences
prove it. They are
measured using
internal quality
attributes which
reduces code
complexity and
coupling but
increases cohesion.

The effects of
defects are not
elaborated and its
generalization in
large context is
not possible.

Can Metrics
Help to Bridge
the Gap Between
the Improvement
of 00 Design
Quality and Its
Automation By
Houari A.
Sahraoui Robert
Godin Thieny
Miceli

To automate the
process of quality
improvement,
metrics can be used.
Metrics can also
automate process of
analyzing defects
and rectifying them.

A designer or
programmer is
needed to
validate the
whole concept.
So it can’t be
considered as
automated.
Moreover, the
situations where
these
transformations
should be applied
are not specified.

 A quantitative
method is proposed

Refactoring
effects can also

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

4

A
Quantitative
Evaluation of
Maintainability
Enhancement by
Refactoring By
Yoshio Kataoka
,Takeo Imai
,Hiroki Andou
and Tetsuji
Fukaya

to analyze the effect
of maintainability
enhancement of the
source code .Its
implementation
somehow made
reasonable judgment
regarding what
programmer can or
cannot do to enhance
code maintainability.

be calculated
based on metrics.
Although
refactoring
effects calculated
by coupling
metrics are
limited.

Refactoring –
Does it improve
software quality?
By Konstantinos
Stroggylos,
Diomidis
Spinellis

How metrics of
open source projects
were affected can be
examined by
refactoring
performed by
developers. It may
lead to modifications
in the metrics to the
worse.

In real life
system,
enhancement to
one matric does
not affect various
metrics.

IV. CONCLUSION

All the findings and conclusion made clean room software
coding vaster for research. Existing research work suggests
that in order to safeguard productivity and inevitability of
development goals, refactoring must be small enough.
Software engineering case studies are very rear in industries so
it gives huge confidence on these findings. However, it should
be kept in mind that findings of research work are valid only
in specific areas of study. To achieve confidence in such
studies, it is recommended to research in all contexts and
make results more common.

To analyze refactoring, effect of change in various metrics
can be used which enhances overall quality of the system.
Empirical analysis can be repeated on more proprietary and
open source systems. Findings showed that it is possible to
implement design into existing code automatically.

REFERENCES

[1]

G. Szoke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimothy, “Bulk fixing
coding issues and its effects on software quality: Is it worth

refactoring?,” Proc. -

2014 14th IEEE Int. Work. Conf. Source Code
Anal. Manip. SCAM 2014,

September

2014, pp. 95–104.

[2]

Y. Yu, J. Mylopoulos, E. Yu, J. C. Leite, L. L. Liu, and E. D’Hollander,
“Software refactoring guided by multiple soft-goals,” in

Proceedings of

The First International Workshop on Refactoring: Achievements,
Challenges, Effects (REFACE 2003), 2003, pp. 7–11.

[3]

S. Demeyer, “Refactor conditionals into polymorphism: What’s the
performance cost of

introducing virtual calls ?,”

IEEE Int. Conf. Softw.
Maintenance, ICSM, vol. 2005, pp. 627–630, 2005.

[4]

J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using

nonfunctional requirements: a process-oriented approach,” IEEE Trans.
Softw. Eng., vol. 18, no. 6, pp. 483–497, 1992.

[5]

T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy, “A
Probabilistic Software Quality Model,”

27th IEEE International
Conference on

Software Maintenance (ICSM), September

2011, pp.
243–252.

[6]

Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative
evaluation of maintainability enhancement by refactoring,” in

Proceedings of

International Conference on

Software Maintenance,
2002, pp. 576–585.

[7]

T. Bakota, P. Hegedus, G. Ladanyi, P. Kortvelyesi, R. Ferenc, and T.
Gyimothy, “A cost model based on software maintainability,” in
Software Maintenance (ICSM), 2012 28th IEEE International
Conference on,

2012, pp. 316–325.

[8]

L. Tahvildari and K. Kontogiannis, “A metric-based approach to
enhance design quality through meta-pattern transformations,” in
Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR,

2003, pp. 183–192.

[9]

K. Stroggylos and D. Spinellis, “Refactoring--Does It Improve Software
Quality?,” Fifth Int. Work. Softw. Qual. (WoSQ’07 ICSE Work. 2007),
pp. 3–8.

[10]

W. Wang and M. W. Godfrey, “Recommending clones for refactoring
using design, context, and history,” Proc. -

30th Int. Conf. Softw. Maint.
Evol. ICSME 2014, pp. 331–340.

[11]

F. W. Opdyke, “Refactoring object-oriented frameworks,” 1992.

[12]

H. A. Sahraoui, R. Godin, and T. Miceli, “Can metrics help to bridge the
gap between the improvement of OO design quality and its automation?
in

Proceedings. of Int. Conf.

Softw. Maintenance,

pp. 154–162, 2000.

[13]

B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring -

Improving
coupling and cohesion of existing code,” Proc. -

Work. Conf. Reverse
Eng. WCRE, pp. 144–151, 2004.

[14]

R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, "A
case study on the impact of refactoring on quality and productivity in an
agile team",

vol. 5082 LNCS. 2008, pp. 252–266.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

5

