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Abstract  
 

 The phenomenal growth of the Internet has 

been fueled by the rapid increase in the 

communication link bandwidth. Internet routers 

play a crucial role in sustaining this growth by 

being able to switch packets extremely fast to keep 

up with the growing bandwidth (line rate). This 

demands sophisticated packet switching and 

buffering techniques. Packet buffers need to be 

designed to support large capacity, multiple 

queues, and provide short response times. 

     In this paper we studied the fundamental issues 

to be addressed for distributed packet buffering 

during the communication over the internet. 

 

1. Introduction  
 

Packet buffers are an essential part of routers. 

In high- end routers these buffers need to store a 

large amount of data at very high speeds. To satisfy 

these requirements, we need a memory with the 

speed of SRAM and the density of DRAM. A 

typical solution is to use hybrid packet buffers built 

from a combination of SRAM and DRAM, where 

the SRAM holds the heads and tails of per-flow 

packet FIFOs and the DRAM is used for bulk 

storage. The main challenge then is to minimize the 

size of the SRAM while providing reasonable 

performance guarantees. 

High speed Internet routers and switches 

require fast packet buffer to hold packets during 

times of congestion. These buffers usually use a 

memory hierarchy that consist of expensive but fast 

SRAM and cheap but slow DRAM to meet both, 

speed and capacity requirements. A challenge 

building these packet buffers is to provide 

deterministic bandwidth guarantee under any traffic 

condition. We propose a novel hybrid packet buffer 

architecture with parallel DRAMs. Our approach 

reduces the amount of required SRAM compared to 

state-of-the-art architectures significantly, e.g., the 

tail SRAM by 47% for a 100Gbps line card using 

DDR3 SDRAM. Our architecture also applies 

packet aggregation and thereby minimizes the 

required DRAM and SRAM bandwidth and 

eliminates fragmentation. We are currently 

implementing the architecture on an FPGA and 

provide first results. 

In order to support fine-grained IP quality of 

service(QoS) requirements, nowadays, a packet 

buffer usually maintains thousands of queues. For 

example, the Juniper E-series routers maintain as 

many as 64,000 queues. Given the increasing 

popularity of Open Flow, a packet buffer that 

supports millions of queues is always desired. 

Furthermore, a packet buffer should be capable of 

sustaining continuous data streams for both ingress 

and egress. With the ever-increasing line rate, 

current available memory technologies, namely 

SRAM or DRAM alone cannot simultaneously 

satisfy these three requirements. This prompted 

researchers to suggest hybrid SRAM/ DRAM 

(HSD) architecture with a single DRAM, 

interleaved DRAMs, or parallel DRAMs 

sandwiched between SRAMs. 

In the following, we address the packet buffer 

requirements and the available memory 

technologies to meet these. Then we introduce the 

state-of-the-art hybrid memory approach to build 

packet buffers, before we outline our contribution. 
 

 Packet Buffer Requirements 

 Available Memory Types 

 Hybrid SRAM/DRAM Memory Architecture 
 

2. Related Work (Optical Buffer) 

 
In this section we are going to address several 

questions such as 
 

 Why do Routers have Buffers? 

 How big should the Buffers be? 

 How can Optical Data be stored? 
 

There are three main reasons that routers have 

buffers.  

 

1) Congestion: Congestion occurs when packets 

for a switch output arrive faster than the speed of 

the outgoing line. For example, packets might 

arrive continuously at two different inputs, all 
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destined to the same output. If a switch output is 

constantly overloaded, their buffers will eventually 

overflow, no matter how large it is; it simply 

cannot transmit the packets as fast as they arrive. 

Short-term congestion is common due to the 

statistical arrival time of packets. Long-term 

congestion is usually controlled by an external 

mechanism, such as the end-to-end congestion 

avoidance mechanisms of TCP, the XON/XOFF 

mechanisms of Ethernet, or by the end-host 

application. In practice, we have to decide how big 

to make the congestion buffers. The decision is 

based on the congestion control mechanism—if it 

responds quickly to reduce congestion, then the 

buffers can be small; else, they have to be large. 

The congestion buffers are the largest buffers in a 

router, and so will be our main focus in this paper. 

A typical Internet router today holds millions of 

packet buffers for congestion.  

 

 
 

Figure 1: Buffering in a CIOQ router. 

 
 

2) Internal Contention: Even when the external 

links are not congested, most packet switches can 

experience internal contention because of 

imperfections in their data paths and arbitration 

mechanisms. The amount of contention, and 

therefore the number of buffers needed, is 

determined by the switch architecture. For 

example, an output-queued switch has no internal 

contention and needs no contention buffers. At the 

other extreme, an input-queued switch can have 

lots of internal contention, as typified in the 

seminal paper of Karol that shows contention can 

limit the throughput of an input-queued switch to 

just 58% of its maximum. Between the two 

extremes, it is possible to build input-queued 

switches with 100% throughput. These switches 

need large internal buffers (theoretically, of infinite 

depth) to hold packets during times of contention. 

Some architectures can precisely emulate output 

queuing through careful arbitration and a 

combination of input and output queues (CIOQ). 

These switches still need contention queues (at 

their inputs) to hold packets while the arbitration 

algorithm decides when to deliver each to its output 

queue. Most switches today use CIOQ or multiple 

stages of CIOQ. As we will see in the next section, 

CIOQ switches typically need very small 

contention buffers. Fig. 1 shows the generic 

architecture of a CIOQ switch.  

 

3) Staging: Packet switches also have staging 

buffers for pipelining and synchronization. Most 

designs have hundreds of pipeline stages, each with 

a small fixed-delay buffer to hold a fixed amount of 

data. Most designs also have multiple clock 

domains, with packets crossing several domains 

between input and output; each transition requires a 

small fixed-size FIFO. In this paper, we will not be 

considering staging buffers. Their sheer number 

means they cannot be ignored, but because they are 

of fixed size and delay, they can be implemented in 

various ways using small optical delay lines. 

 

3. Semi Parallel Hybrid SRAM/DRAM 

(SPHSD) Packet Buffer Architecture  
 

A. Architecture  
 

Semi Parallel Hybrid SRAM/DRAM (SPHSD) 

architecture is depicted in Figure 3. Its core 

consists of k parallel DRAMs (or DRAM banks), 

one tail buffer and one head buffer. Each DRAM 

provides 1/k of the required bandwidth and 

contains Q FIFO flow queues, i.e. each logical flow 

queue is spread over all k DRAMs. The packet 

buffer aggregates packet data per-flow to constant 

size blocks. As always full blocks are written to 

and read from DRAM the total DRAM bandwidth 

is dimensioned to 2R, which is the minimum 

possible. So each DRAM provides a bandwidth of 

2R/k, i.e. R/k for reading and R/k for writing. The 

random access time of a DRAM is T and so each 

DRAM performs one read and one write every 2T. 

Access time (2T) and bandwidth (R/k) of a DRAM 

define the block size of b = 2TR/k. 

 

 
 

Figure 2: Basic Hybrid SRAM/DRAM Architecture 
 

 
 

Figure 3: Parallel Hybrid SRAM/DRAM Architecture 

 

B. Dimensioning of Parallelism 
 

The parallelism of the architecture is controlled 

by the value of k. We will show in Section IV that 
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with dynamic allocation the tail buffer size 

decreases with increasing k. The block size b = 

2TR/k is inversely proportional to k. For k = 1 

block size and basic architecture are equal. The 

minimum block size is determined by the used 

DRAM technology. E.g. with standard DDR3 

SDRAM DIMMs (Dual Inline Memory Module) 

the smallest reasonable block size is 64byte. At a 

given line rate this determines the upper limit of k, 

e.g., for R = 100Gbps and T = 49ns, ⌈k⌉ = 20. The 

organization overhead required for dynamic 

memory allocation increases towards smaller block 

size. This defines another upper limit for k. 
 

C. Tail Round Robin Memory Management 

Algorithm 
 

This section describes the round robin MMA 

utilized in the tail part. The MMA consist of two 

components: the per-flow round robin dispatcher 

and the tail transferor. Dispatcher and transferor 

work independently. 

 

D. Head Round Robin Memory Management 

Algorithm 

 
Our SPHSD architecture is symmetric. So a 

similar MMA can be used on the head side. The 

per-flow round robin requester behaves identical to 

the dispatcher except that it operates on packet 

requests instead of packets. Therefore, also the 

properties of the request queues are identical to that 

of the DRAM queues on tail side. As requests are 

negligible in size compared to blocks, the request 

buffer is not considered further. For the head 

transferor we have two options. First, the transferor 

can implement a trivial algorithm and process 

every packet request as soon as possible. As the 

head buffer acts as a reorder buffer this maximizes 

the head buffer size. Second, the transferor can 

behave inversely and wait before processing a 

request as long as possible, while still guaranteeing 

a constant read latency. With this, the head buffer 

has to reorder fewer packets. Utilizing dynamic 

memory allocation reduces head buffer size. 

 

4. Packet Buffers for Router Linecards  

 
In this section we study the packet buffer for 

router linecards with trail cache and head cache. 

 

4.1 A Tail-Cache that never over-runs  
 

Theorem 1: If dynamically allocated, the tail cache 

must contain at least bytes.  

 

Proof: If there are bytes in the tail cache, then at 

least one queue must have or more bytes in it, and 

so a block of b bytes can be written to DRAM. If 

blocks are written whenever there is a queue with b 

or more bytes in it, then the tail cache can never 

have more than  bytes in it. 

 

4.2 A Head-Cache that never under-runs 
 

This section identified the implementation of 

head-cache algorithms with and without pipelining. 

If we assume the head cache is statically 

divided into Q different memories of size, the 

following theorem tells us how big the head cache 

has to be (i.e. Qw) so that packets are always in the 

head cache when the packet processor needs them.  

 

Theorem 2: To guarantee that a byte is always 

available in head cache when 

requested, the head cache must 

contain at least bytes.  

 

Proof:  It is one thing to know the theoretical 

bound; it is another matter to actually design the 

cache so as to achieve the bound. We need to find 

an algorithm that will decide when to refill the head 

cache from the DRAM; which queue should it 

replenish next? The most obvious algorithm would 

be shortest queue first; i.e. refill the queue in the 

head cache with the least data in it. It turns out that 

a slight variant does the job.  
      High-performance routers use deep pipelines to 

process packets in tens or even hundreds of 

consecutive stages. So it is worth asking if we can 

reduce the size of the head cache by pipelining the 

reads to the packet buffer in a look ahead buffer. 

The read rate is the same as before, it is just that the 

algorithm can spend longer processing each read. 

Perhaps it can use the extra time to get a ―heads-

up‖ of which queues need refilling, and start 

fetching data from the appropriate queues in 

DRAM sooner. We will now describe an algorithm 

that does exactly that; and we will see it needs a 

much smaller head cache. 
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Figure 4: ECQF with Q = 4 and b = 3 bytes. 

 

When the packet processor issues a read, we are 

going to put it into the look ahead buffer shown in 

Figure 4. While the requests make their way 

through the look ahead buffer, the algorithm can 

take a ―peek‖ at which queues are receiving 

requests. Instead of waiting for a queue to run low 

(i.e. for a deficit to build), it can anticipate the need 

for data and go fetch it in advance. As an example, 

Figure 4 shows how the look ahead buffer 

advances every time slot. The first request in the 

look ahead buffer at time slot request A1 in Figure 

4 is processed at time slot as shown in Figure 4. A 

new request can arrive to the tail of the look ahead 

buffer every time slot request C2 in Figure 4b. 

 

5. Packet Buffer with Statistical 

Guarantees  

 
Packet buffers in high-performance routers are 

challenging to design because of two factors: 

memory speed and memory size. Packets belonging 

to different flows (for example, these flows may 

correspond to different IP source-destination pairs) 

arrive and depart at line rate, and are typically 

stored in per-flow queues. Consecutive pack- ets 

may belong to different flows in an unpredictable 

manner. This requires that the buffer be able to 

store as well as retrieve packets at line rates in an 

unpredictable memory access order. Thus, the 

buffer has to match a raw bandwidth (in bits/s) as 

well as a memory random access speed (in 

packets/s) of at least twice the line rate. In addition, 

a rule of thumb indicates that, for TCP to work 

well, the buffer should be able to store an amount 

of data equal to the product of the line rate and the 

average round-trip-time. While it has been recently 

challenged, this rule of thumb is still widely used. 

Therefore, both the speed and size of the memory 

grow linearly with the line rate. As an example, 

consider a 40Gbits/s linecard. This requires the 

buffer to match a raw bandwidth of 80Gbits/s. In 

addition, assuming a constant stream of 40-byte 

packets, which corresponds to minimum size IP 

packets containing TCP ACKs, the buffer must 

read and write a packet every 8ns. This translates to 

one memory operation every 4ns, or a random 

access speed of 250Mpackets/s. Finally, assuming 

an average round-trip time of 0.25s, the buffer must 

hold 10Gbits. We now investigate the properties of 

two popular commercially avail- able memories - 

SRAM and DRAM - to see if they match these 

requirements. 

We note that state-of-the-art SRAMs meet the 

raw bandwidth requirement of 80Gbits/s as well as 

the random access time requirement of 4ns. 

However, these SRAMs can only hold a maximum 

of 32Mbits per device. Thus, an SRAM-only 

solution would require over 300 SRAM devices, 

and therefore be very costly in terms of board real 

estate. In addition, these SRAMs consume 

approximately 1.6W per device. This means a total 

power consumption of 480W - more than the 

power budget typically allocated to the whole 

linecard. On the other hand, state-of-the-art 

DRAMs can hold up to 1Gbits per device, while 

consuming 2W per device. So, a DRAM-only 

solution would require only 10 DRAM devices, 

while consuming 20W, and therefore easily meet 

the real estate and power requirements. However, 

DRAM access times haven’t kept up with the line 

rates - with today’s DRAM technology, the random 

access times are in the range 20ns-40ns, and barely 

meet the requirements for even a 10Gbits/s line 

card. This shortfall is not going to be solved 

anytime soon since DRAMs are optimized for size 

rather than random access times, and the random 

access times improve by only 10% every 18 

months. On the other hand, the line rate doubles in 

the same time period. Thus, this problem will get 

worse rather than better over time. Thus, an 

SRAM-only or a DRAM-only solution cannot meet 

both the speed and size requirements 

simultaneously. Since, overall, we would like to 

have a fast and large memory with the speed of 

SRAM and the density of DRAM, a solution would 

be to use both, in a manner very similar to 
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computer systems where fast SRAMs are used as 

caches whereas dense DRAMs hold bulk of data. 

 

6. Evaluation  

 
The two main metrics of a hybrid packet buffer are 

(1) the required head and tail buffer size and (2) the 

read latency. In the following the upper bound for 

the tail and head buffer size as well as the read 

latency are derived. 

For the following proofs we will assume that 

the minimal packet size Pmin that can arrive or 

depart from the packet buffer is ≈ 0. This is a 

worst-case approximation that will slightly raise 

our bounds but simplify the proofs. 

 

A. Tail Buffer Size  

 

Theorem 1.  If the tail buffer is statically divided 

in k partitions (one for each DRAM 

queue) the upper bound for the tail 

buffer size in blocks is Qk. 

 

Proof: We know from Lemma 1 that no more than 

Q blocks can accumulate per DRAM queue. With k 

DRAM queues the upper bound is Qk blocks. This 

is nearly equal to the tail buffer size require. The 

difference originates from the different 

assumptions for Pmin. Due to the per-flow round 

robin dispatching not all DRAM queues can be full 

at the same time. This allows a significant buffer 

size reduction with dynamic memory allocation. 

 

Theorem 2. If dynamically allocated, the upper 

bound for the tail buffer size in 

blocks is Q(k + 1)/2  

Proof: We assume that packets arrive at the packet 

buffer continuously with full line rate R. This 

represents the worst- case if we want to show that 

the buffer size is bounded. The proof consists of 

four steps leading to Lemma 2, 3, 4 and 5. We 

make the following observation: as long as any 

DRAM is idle because its DRAM queue contains 

no full blocks, tail buffer size will grow. The worst-

case traffic pattern maximizes DRAM idle time and 

by this define the upper bound for the tail buffers 

size. In the following we define a traffic pattern and 

proof that it’s the worst case traffic pattern, as it 

maximizes required buffer size. 

 

B. Read Latency  

 

We derive the read latency before the head 

buffer size, as the head buffer size depends on this 

value. The read latency is the time between issuing 

a read request to the packet buffer and receiving the 

packet. This corresponds to the minimum delay 

that a packet buffer introduces to every packet. 

 

Theorem 3. The packet buffer has a constant read 

latency of Qk time slots. 

 

Proof: The read latency is the sum of the 

maximum latencies introduced by head and tail 

part. 

 

C. Head Buffer Size  

 

Theorem 4. If the head buffer utilizes dynamic 

memory allocation and the head 

transferor processes every request as 

early as possible, then the upper 

bound for the head buffer size in 

blocks is Q(k + 1). 

 

Proof: The head buffer (a) stores blocks to ensure 

in order delivery and a constant read latency and 

(b) stores not yet requested packet segments. 

Memory size for (a) is maximized, when Qk blocks 

of a single flow are requested consecutively starting 

from an empty request buffer. The head transferor 

processes each request immediately. After the read 

latency of Qk time slots (Q−1)k blocks are 

completely received from DRAM and k blocks are 

partly received. Memory size for (b) is maximized, 

when the Q − 1 other flows each have one segment 

of nearly the size of a full block available in the 

head buffer. Rounded up, the upper bound for the 

head buffer size is Q(k + 1) blocks. 
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