
Efficient and Novel Distributed Packet Buffers and High-Bandwidth

Switches and Routers

G. Manjunath Reddy 1, P. Namratha 2

1
M.Tech(CSE), Intell Engineering College, Ananthapur, Andhra Pradesh, India

2
Assistant Professor, Dept.of CSE, Intell Engineering College, Ananthapur, Andhra Pradesh, India

Abstract

 The phenomenal growth of the Internet has

been fueled by the rapid increase in the

communication link bandwidth. Internet routers

play a crucial role in sustaining this growth by

being able to switch packets extremely fast to keep

up with the growing bandwidth (line rate). This

demands sophisticated packet switching and

buffering techniques. Packet buffers need to be

designed to support large capacity, multiple

queues, and provide short response times.

 In this paper we studied the fundamental issues

to be addressed for distributed packet buffering

during the communication over the internet.

1. Introduction

Packet buffers are an essential part of routers.

In high- end routers these buffers need to store a

large amount of data at very high speeds. To satisfy

these requirements, we need a memory with the

speed of SRAM and the density of DRAM. A

typical solution is to use hybrid packet buffers built

from a combination of SRAM and DRAM, where

the SRAM holds the heads and tails of per-flow

packet FIFOs and the DRAM is used for bulk

storage. The main challenge then is to minimize the

size of the SRAM while providing reasonable

performance guarantees.

High speed Internet routers and switches

require fast packet buffer to hold packets during

times of congestion. These buffers usually use a

memory hierarchy that consist of expensive but fast

SRAM and cheap but slow DRAM to meet both,

speed and capacity requirements. A challenge

building these packet buffers is to provide

deterministic bandwidth guarantee under any traffic

condition. We propose a novel hybrid packet buffer

architecture with parallel DRAMs. Our approach

reduces the amount of required SRAM compared to

state-of-the-art architectures significantly, e.g., the

tail SRAM by 47% for a 100Gbps line card using

DDR3 SDRAM. Our architecture also applies

packet aggregation and thereby minimizes the

required DRAM and SRAM bandwidth and

eliminates fragmentation. We are currently

implementing the architecture on an FPGA and

provide first results.

In order to support fine-grained IP quality of

service(QoS) requirements, nowadays, a packet

buffer usually maintains thousands of queues. For

example, the Juniper E-series routers maintain as

many as 64,000 queues. Given the increasing

popularity of Open Flow, a packet buffer that

supports millions of queues is always desired.

Furthermore, a packet buffer should be capable of

sustaining continuous data streams for both ingress

and egress. With the ever-increasing line rate,

current available memory technologies, namely

SRAM or DRAM alone cannot simultaneously

satisfy these three requirements. This prompted

researchers to suggest hybrid SRAM/ DRAM

(HSD) architecture with a single DRAM,

interleaved DRAMs, or parallel DRAMs

sandwiched between SRAMs.

In the following, we address the packet buffer

requirements and the available memory

technologies to meet these. Then we introduce the

state-of-the-art hybrid memory approach to build

packet buffers, before we outline our contribution.

 Packet Buffer Requirements

 Available Memory Types

 Hybrid SRAM/DRAM Memory Architecture

2. Related Work (Optical Buffer)

In this section we are going to address several

questions such as

 Why do Routers have Buffers?

 How big should the Buffers be?

 How can Optical Data be stored?

There are three main reasons that routers have

buffers.

1) Congestion: Congestion occurs when packets

for a switch output arrive faster than the speed of

the outgoing line. For example, packets might

arrive continuously at two different inputs, all

1050

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80260

destined to the same output. If a switch output is

constantly overloaded, their buffers will eventually

overflow, no matter how large it is; it simply

cannot transmit the packets as fast as they arrive.

Short-term congestion is common due to the

statistical arrival time of packets. Long-term

congestion is usually controlled by an external

mechanism, such as the end-to-end congestion

avoidance mechanisms of TCP, the XON/XOFF

mechanisms of Ethernet, or by the end-host

application. In practice, we have to decide how big

to make the congestion buffers. The decision is

based on the congestion control mechanism—if it

responds quickly to reduce congestion, then the

buffers can be small; else, they have to be large.

The congestion buffers are the largest buffers in a

router, and so will be our main focus in this paper.

A typical Internet router today holds millions of

packet buffers for congestion.

Figure 1: Buffering in a CIOQ router.

2) Internal Contention: Even when the external

links are not congested, most packet switches can

experience internal contention because of

imperfections in their data paths and arbitration

mechanisms. The amount of contention, and

therefore the number of buffers needed, is

determined by the switch architecture. For

example, an output-queued switch has no internal

contention and needs no contention buffers. At the

other extreme, an input-queued switch can have

lots of internal contention, as typified in the

seminal paper of Karol that shows contention can

limit the throughput of an input-queued switch to

just 58% of its maximum. Between the two

extremes, it is possible to build input-queued

switches with 100% throughput. These switches

need large internal buffers (theoretically, of infinite

depth) to hold packets during times of contention.

Some architectures can precisely emulate output

queuing through careful arbitration and a

combination of input and output queues (CIOQ).

These switches still need contention queues (at

their inputs) to hold packets while the arbitration

algorithm decides when to deliver each to its output

queue. Most switches today use CIOQ or multiple

stages of CIOQ. As we will see in the next section,

CIOQ switches typically need very small

contention buffers. Fig. 1 shows the generic

architecture of a CIOQ switch.

3) Staging: Packet switches also have staging

buffers for pipelining and synchronization. Most

designs have hundreds of pipeline stages, each with

a small fixed-delay buffer to hold a fixed amount of

data. Most designs also have multiple clock

domains, with packets crossing several domains

between input and output; each transition requires a

small fixed-size FIFO. In this paper, we will not be

considering staging buffers. Their sheer number

means they cannot be ignored, but because they are

of fixed size and delay, they can be implemented in

various ways using small optical delay lines.

3. Semi Parallel Hybrid SRAM/DRAM

(SPHSD) Packet Buffer Architecture

A. Architecture

Semi Parallel Hybrid SRAM/DRAM (SPHSD)

architecture is depicted in Figure 3. Its core

consists of k parallel DRAMs (or DRAM banks),

one tail buffer and one head buffer. Each DRAM

provides 1/k of the required bandwidth and

contains Q FIFO flow queues, i.e. each logical flow

queue is spread over all k DRAMs. The packet

buffer aggregates packet data per-flow to constant

size blocks. As always full blocks are written to

and read from DRAM the total DRAM bandwidth

is dimensioned to 2R, which is the minimum

possible. So each DRAM provides a bandwidth of

2R/k, i.e. R/k for reading and R/k for writing. The

random access time of a DRAM is T and so each

DRAM performs one read and one write every 2T.

Access time (2T) and bandwidth (R/k) of a DRAM

define the block size of b = 2TR/k.

Figure 2: Basic Hybrid SRAM/DRAM Architecture

Figure 3: Parallel Hybrid SRAM/DRAM Architecture

B. Dimensioning of Parallelism

The parallelism of the architecture is controlled

by the value of k. We will show in Section IV that

1051

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80260

with dynamic allocation the tail buffer size

decreases with increasing k. The block size b =

2TR/k is inversely proportional to k. For k = 1

block size and basic architecture are equal. The

minimum block size is determined by the used

DRAM technology. E.g. with standard DDR3

SDRAM DIMMs (Dual Inline Memory Module)

the smallest reasonable block size is 64byte. At a

given line rate this determines the upper limit of k,

e.g., for R = 100Gbps and T = 49ns, ⌈k⌉ = 20. The

organization overhead required for dynamic

memory allocation increases towards smaller block

size. This defines another upper limit for k.

C. Tail Round Robin Memory Management

Algorithm

This section describes the round robin MMA

utilized in the tail part. The MMA consist of two

components: the per-flow round robin dispatcher

and the tail transferor. Dispatcher and transferor

work independently.

D. Head Round Robin Memory Management

Algorithm

Our SPHSD architecture is symmetric. So a

similar MMA can be used on the head side. The

per-flow round robin requester behaves identical to

the dispatcher except that it operates on packet

requests instead of packets. Therefore, also the

properties of the request queues are identical to that

of the DRAM queues on tail side. As requests are

negligible in size compared to blocks, the request

buffer is not considered further. For the head

transferor we have two options. First, the transferor

can implement a trivial algorithm and process

every packet request as soon as possible. As the

head buffer acts as a reorder buffer this maximizes

the head buffer size. Second, the transferor can

behave inversely and wait before processing a

request as long as possible, while still guaranteeing

a constant read latency. With this, the head buffer

has to reorder fewer packets. Utilizing dynamic

memory allocation reduces head buffer size.

4. Packet Buffers for Router Linecards

In this section we study the packet buffer for

router linecards with trail cache and head cache.

4.1 A Tail-Cache that never over-runs

Theorem 1: If dynamically allocated, the tail cache

must contain at least bytes.

Proof: If there are bytes in the tail cache, then at

least one queue must have or more bytes in it, and

so a block of b bytes can be written to DRAM. If

blocks are written whenever there is a queue with b

or more bytes in it, then the tail cache can never

have more than bytes in it.

4.2 A Head-Cache that never under-runs

This section identified the implementation of

head-cache algorithms with and without pipelining.

If we assume the head cache is statically

divided into Q different memories of size, the

following theorem tells us how big the head cache

has to be (i.e. Qw) so that packets are always in the

head cache when the packet processor needs them.

Theorem 2: To guarantee that a byte is always

available in head cache when

requested, the head cache must

contain at least bytes.

Proof: It is one thing to know the theoretical

bound; it is another matter to actually design the

cache so as to achieve the bound. We need to find

an algorithm that will decide when to refill the head

cache from the DRAM; which queue should it

replenish next? The most obvious algorithm would

be shortest queue first; i.e. refill the queue in the

head cache with the least data in it. It turns out that

a slight variant does the job.
 High-performance routers use deep pipelines to

process packets in tens or even hundreds of

consecutive stages. So it is worth asking if we can

reduce the size of the head cache by pipelining the

reads to the packet buffer in a look ahead buffer.

The read rate is the same as before, it is just that the

algorithm can spend longer processing each read.

Perhaps it can use the extra time to get a ―heads-

up‖ of which queues need refilling, and start

fetching data from the appropriate queues in

DRAM sooner. We will now describe an algorithm

that does exactly that; and we will see it needs a

much smaller head cache.

1052

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80260

Figure 4: ECQF with Q = 4 and b = 3 bytes.

When the packet processor issues a read, we are

going to put it into the look ahead buffer shown in

Figure 4. While the requests make their way

through the look ahead buffer, the algorithm can

take a ―peek‖ at which queues are receiving

requests. Instead of waiting for a queue to run low

(i.e. for a deficit to build), it can anticipate the need

for data and go fetch it in advance. As an example,

Figure 4 shows how the look ahead buffer

advances every time slot. The first request in the

look ahead buffer at time slot request A1 in Figure

4 is processed at time slot as shown in Figure 4. A

new request can arrive to the tail of the look ahead

buffer every time slot request C2 in Figure 4b.

5. Packet Buffer with Statistical

Guarantees

Packet buffers in high-performance routers are

challenging to design because of two factors:

memory speed and memory size. Packets belonging

to different flows (for example, these flows may

correspond to different IP source-destination pairs)

arrive and depart at line rate, and are typically

stored in per-flow queues. Consecutive pack- ets

may belong to different flows in an unpredictable

manner. This requires that the buffer be able to

store as well as retrieve packets at line rates in an

unpredictable memory access order. Thus, the

buffer has to match a raw bandwidth (in bits/s) as

well as a memory random access speed (in

packets/s) of at least twice the line rate. In addition,

a rule of thumb indicates that, for TCP to work

well, the buffer should be able to store an amount

of data equal to the product of the line rate and the

average round-trip-time. While it has been recently

challenged, this rule of thumb is still widely used.

Therefore, both the speed and size of the memory

grow linearly with the line rate. As an example,

consider a 40Gbits/s linecard. This requires the

buffer to match a raw bandwidth of 80Gbits/s. In

addition, assuming a constant stream of 40-byte

packets, which corresponds to minimum size IP

packets containing TCP ACKs, the buffer must

read and write a packet every 8ns. This translates to

one memory operation every 4ns, or a random

access speed of 250Mpackets/s. Finally, assuming

an average round-trip time of 0.25s, the buffer must

hold 10Gbits. We now investigate the properties of

two popular commercially avail- able memories -

SRAM and DRAM - to see if they match these

requirements.

We note that state-of-the-art SRAMs meet the

raw bandwidth requirement of 80Gbits/s as well as

the random access time requirement of 4ns.

However, these SRAMs can only hold a maximum

of 32Mbits per device. Thus, an SRAM-only

solution would require over 300 SRAM devices,

and therefore be very costly in terms of board real

estate. In addition, these SRAMs consume

approximately 1.6W per device. This means a total

power consumption of 480W - more than the

power budget typically allocated to the whole

linecard. On the other hand, state-of-the-art

DRAMs can hold up to 1Gbits per device, while

consuming 2W per device. So, a DRAM-only

solution would require only 10 DRAM devices,

while consuming 20W, and therefore easily meet

the real estate and power requirements. However,

DRAM access times haven’t kept up with the line

rates - with today’s DRAM technology, the random

access times are in the range 20ns-40ns, and barely

meet the requirements for even a 10Gbits/s line

card. This shortfall is not going to be solved

anytime soon since DRAMs are optimized for size

rather than random access times, and the random

access times improve by only 10% every 18

months. On the other hand, the line rate doubles in

the same time period. Thus, this problem will get

worse rather than better over time. Thus, an

SRAM-only or a DRAM-only solution cannot meet

both the speed and size requirements

simultaneously. Since, overall, we would like to

have a fast and large memory with the speed of

SRAM and the density of DRAM, a solution would

be to use both, in a manner very similar to

1053

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80260

computer systems where fast SRAMs are used as

caches whereas dense DRAMs hold bulk of data.

6. Evaluation

The two main metrics of a hybrid packet buffer are

(1) the required head and tail buffer size and (2) the

read latency. In the following the upper bound for

the tail and head buffer size as well as the read

latency are derived.

For the following proofs we will assume that

the minimal packet size Pmin that can arrive or

depart from the packet buffer is ≈ 0. This is a

worst-case approximation that will slightly raise

our bounds but simplify the proofs.

A. Tail Buffer Size

Theorem 1. If the tail buffer is statically divided

in k partitions (one for each DRAM

queue) the upper bound for the tail

buffer size in blocks is Qk.

Proof: We know from Lemma 1 that no more than

Q blocks can accumulate per DRAM queue. With k

DRAM queues the upper bound is Qk blocks. This

is nearly equal to the tail buffer size require. The

difference originates from the different

assumptions for Pmin. Due to the per-flow round

robin dispatching not all DRAM queues can be full

at the same time. This allows a significant buffer

size reduction with dynamic memory allocation.

Theorem 2. If dynamically allocated, the upper

bound for the tail buffer size in

blocks is Q(k + 1)/2

Proof: We assume that packets arrive at the packet

buffer continuously with full line rate R. This

represents the worst- case if we want to show that

the buffer size is bounded. The proof consists of

four steps leading to Lemma 2, 3, 4 and 5. We

make the following observation: as long as any

DRAM is idle because its DRAM queue contains

no full blocks, tail buffer size will grow. The worst-

case traffic pattern maximizes DRAM idle time and

by this define the upper bound for the tail buffers

size. In the following we define a traffic pattern and

proof that it’s the worst case traffic pattern, as it

maximizes required buffer size.

B. Read Latency

We derive the read latency before the head

buffer size, as the head buffer size depends on this

value. The read latency is the time between issuing

a read request to the packet buffer and receiving the

packet. This corresponds to the minimum delay

that a packet buffer introduces to every packet.

Theorem 3. The packet buffer has a constant read

latency of Qk time slots.

Proof: The read latency is the sum of the

maximum latencies introduced by head and tail

part.

C. Head Buffer Size

Theorem 4. If the head buffer utilizes dynamic

memory allocation and the head

transferor processes every request as

early as possible, then the upper

bound for the head buffer size in

blocks is Q(k + 1).

Proof: The head buffer (a) stores blocks to ensure

in order delivery and a constant read latency and

(b) stores not yet requested packet segments.

Memory size for (a) is maximized, when Qk blocks

of a single flow are requested consecutively starting

from an empty request buffer. The head transferor

processes each request immediately. After the read

latency of Qk time slots (Q−1)k blocks are

completely received from DRAM and k blocks are

partly received. Memory size for (b) is maximized,

when the Q − 1 other flows each have one segment

of nearly the size of a full block available in the

head buffer. Rounded up, the upper bound for the

head buffer size is Q(k + 1) blocks.

7. References

[1]. Dong Lin, Mounir Hamdi, and Jogesh K.

Muppala – ―Distributed Packet Buffers for

High-Bandwidth Switches and Routers‖,

IEEE Transactions on Parallel and Distributed

Systems, Vol. 23, No. 7, July 2012.

[2]. Arthur Mutter – ―A Novel Hybrid Memory

Architecture with Parallel DRAM for Fast

Packet Buffers‖, 2010 IEEE.

[3]. Neda Beheshti, Emily Burmeister, Yashar

Ganjali, John E. Bowers, Daniel J.

Blumenthal, and Nick McKeown – ―Optical

Packet Buffers for Backbone Internet

Routers‖, IEEE/ACM Transaction on

Networking, Vol. 18, No. 5, October 2010,

pg.no 1599 – 1609.

[4]. Hao Wang Bill Lin – ―Block-Based Packet

Buffer with Deterministic Packet Departures‖,

Department of Electrical and Computer

Engineering, University of California, San

Diego, pg.no 38-43.

[5]. Sundar Iyer, Ramana Rao Kompella, Nick

McKeown – ―Designing Packet Buffers for

Router Linecards‖, Stanford HPNG Technical

Report TR02-HPNG-031001.

1054

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80260

[6]. Gireesh Shrimali, Isaac Keslassy, Nick

McKeown – ―Designing Packet Buffers with

Statistical Guarantees‖, IEEE 2004.

1055

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80260

