
Efficient Handling of Low Memory Situations in

Linux

Prashant B. Patare

Department of Computer Science and Engineering

NIT Calicut

Kerala, India

V. K. Govindan

Department of Computer Science and Engineering

NIT Calicut

Kerala, India

Abstract—Low memory situations in computing systems is

always a daunting issue for operating systems. When a

requested memory requirement by an application can not be

fulfilled, the system calls out-of-memory (OOM) killer to kill one

or more processes so as to free some memory. In the current

paper we are proposing an approach where the system sends

signals to currently running processes so that the processes by

themselves can free some memory. Hence, most of the times we

get sufficient free memory without calling the OOM killer. This

proposed approach can be used along with the approach of

considering the application's past usage history. In addition, in

case if the low memory condition still persists after sending the

low memory signals to processes, then lower priorities for being

killed, are given for the process which has freed some memory.

We will also be suggesting some better ways for controlling the

OOM killer management for some of the processes.

Keywords—Out of memory killer; danger signal; signal

threshold; improviser module; obeying factor; Linux operating

system.

I.

INTRODUCTION

Every computer system has a system memory that we call
RAM, which holds applications for running. System memory
is available in limited amount only. Therefore, optimal use of
it is very essential for good system performance.

Applications can ask for more memory when they need it
using system calls like malloc. However, applications usually
do not use all of its requested memory. Hence, considering
this

fact in mind, the Linux operating system allows over-

commitment of memory, in which the operating system allows
more memory to be granted to processes than available. The
actual memory assignment is differed till actual usage of that
memory page.

Virtual memory allows more memory to be used than
available physical memory. Virtual memory uses the
combination of actual physical memory and the swap space
present on secondary storage holding memory pages.

Out of Memory (OOM) condition is unavoidable due to
over-commitment policy of operating system. In OOM
condition, the system can not allocate memory to a requesting
application and hence, it needs to kill one or more processes
from the system; this is the job of OOM killer. It uses heuristic
approach to find the process that must be killed.

OOM killer first calculates the badness value for each
running process. The badness value indicates the likelihood of
the process to be killed. While calculating the current memory
usage of the process, total running time and some user defined
parameters are taken into consideration. The detailed
algorithm is explained in [9].

Embedded systems have less memory and no swap area. In
this case there is more possibility of OOM condition to occur
more frequently compared to the

high-end computer system.

The rest of the paper is organized as follows: Section II
briefly reviews some of the related work in the topic of
research, and brings out lacunae of out of memory killer to
handle low memory situations. The proposed new approach of
handling low situations is presented in Section III. The system
design incorporating the low memory improviser module is
presented in Section IV. Section V and VI respectively deal
with the algorithm for handling low memory situations, and
method for testing system performance with the improviser
module. Finally, the paper is concluded in Section VII with
proposal for future work.

II.

RELATED WORKS

Some of the related research works addressing the low

memory scenarios are briefly reviewed in this section.

Mauricio Lin et al. [1] proposed an approach for swapless

embedded system memory management. There are two

thresholds proposed, MAT and ST. When the memory

requirement by the process exceeds ST, a signal to that

process is sent telling it to try freeing some memory. The

proposed approach in this paper is per process based

threshold, while we are implementing a single threshold for

whole system.

Rajesh Prodduturi et al. [2] has suggested an improvement

in OOM killer for Android operating system. It prioritizes

applications based on its past usage history, hence an

application is likely not to be considered for killing if it has

been used several times in the past. Along with this approach,

the work also suggests fine tuning of the parameters related to

OOM killer of Android for better performance.

K. Y. Sim et al. [3] have discussed a new optimal test

method for fuzzing the out-of-memory killer. It is based on

Adaptive Random Approach. This test method requires fever

number of samples to reveal any flaws

in the OOM. Fuzzing

is the black box testing technique which is used for crashing

any software under use.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020176

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

192

Goldwyn Rodrigues [5] reviews the concept of OOM

killer and discusses approach for moving the OOM

responsibility to user space. In Linux, a user can change the

value of specific system variable in order to change the

priority of that process for the OOM killer function.

Jonathan Corbet [7] suggested some approaches for

improving the OOM killer, which includes creating a

common and global OOM notification mechanism, also

making OOM functionality to be available to loadable

modules for better control and new framework for describing

policy to kernel.

So in conclusion many approaches were proposed for

optimal handling of low memory conditions and OOM killer

in Linux, most of them were reactive in nature and few were

proactive in nature. But here we are proposing a new

proactive way to tackle the problem using a single system

wide threshold.

III. PROPOSED APPROACH

The issues identified in current out of memory killer can
be summarized as follows:

1. OOM killer may eventually kill some important and
innocent processes.

2. OOM killer uses system resources for its execution

3. OOM killer is too frequently called in embedded
systems with low memory.

4. No opportunity is given to the application for
recovery of itself on its own.

5. No past usage history of application is considered
while deciding to priority for killing.

The last problem was touched by [2], explaining the
approach of using a past usage based strategy for selecting bad
process. The present work proposes an approach in which
the system sends signals to currently running processes so that
the processes can free some unused memory.

Usually when the OOM condition occurs the operating
system calls the OOM killer to kill some of the low priority
processes. A different approach was proposed in [1] for swap-
less embedded systems. The swap-less embedded system does
not have any swap area to save the swapped out pages, hence
all its system memory is equal to physical memory which is
available only in little quantity. In that method, a fixed
threshold is decided for every process in the system and a
system only can request for that much memory only. If any
process asks for more memory than memory access threshold
(MAT) then the process will be eligible for killing. But, there
is another threshold called signal threshold (ST), slightly
lower than MAT, when this ST is reached the application is
given a signal indicating that it is reaching its limit of memory
usage. In response to this signal, the application may start
releasing some of the memory held by it.

The issue with approach in [1] is that it uses a per process
based threshold and not all processes require the same amount
of memory. Hence, choosing proper values of MAT and ST
for processes is a problem. Our current approach in this
paper uses a single system wide threshold which is not a per
process based.

Hence, our proposed approach can be summarized as:

1. A specific threshold called Danger Threshold is

decided for the system

2. Whenever the current memory usage goes beyond the

Danger threshold, a danger_signal is given to each of

the processes in the system, telling them to release

some of the memory.

The following subsection gives more insight into our

proposed approach and discusses it in detail.

A. Approaches for handling the danger_signal

The process after receiving the danger_signal must
release some of its memory. This is possible because every
application whenever asks for more memory also keeps the
record of its usage and has the links to those memory
locations. In most of the cases, the application requires
memory to store a large number of independent inputs; for
example, the image browser application will require memory
to hold many independent images, web browser requires
memory to hold each independent page opened in a tab. So,
most applications have some independent small memory
sections in use. Hence, an application can free some of these
memory sections, but this will definitely affect their
performance and responsiveness. However, this option is
always better than the whole application getting killed by
OOM killer. Hence, this is a trade off here. There can be some
applications for which freeing the memory is not at all
possible. For example, some computational program that may
use extra memory but each of these memory may be needed
for proper function of the application.

B. Working of the improviser module

For the implementation of our proposed approach, we are

designing a kernel module called the Low Memory

Improviser module which will be handling the logic.

Whenever a process frees some memory the statistics about

that event will be stored by this module in a specific data

structure. This information will then help the OOM killer in

future for selecting bad processes.

There can be some applications which may not be

handling the danger_signal at all. So, we will first group all

the applications based on the criteria of whether they handle

the danger_signal or not, we will also consider the type of

process (like kernel process , user process etc.) , its user set

priority etc. This grouping of applications will make easy to

manage the system.

C. Use of past application usage history in OOM killer

As proposed in [2], the frequency of an application usage

is also an important factor while selecting a process to kill

from the system. In the work [2], the author has proposed an

approach where the OOM killer takes into consideration the

particular applications past usages. For example, the gallery

application is more often used than a calender application.

But by default, the system gives same priority to both of the

applications. So, in any situation where we have a choice in

selecting either of these two applications for killing under

Low Memory condition, we must never select the gallery

application.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020176

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

193

Many times, it is better to involve the actual user in
deciding the bad process, because even the application history
also can not tell the exact preference that the user might have
at that time instance. For example, at some time , the calender
may be more important to the user than the gallery. So, it will
be great if we are able to implement some solution for this.

IV.

SYSTEM DESIGN

The Fig.1 shows a very abstracted view of our proposed
system. It is showing some processes running in a system. The
process requests some memory by using system calls, but the
memory fulfillment will be done only after consulting to our
low Memory Improviser module. If the system is burdening
on low memory then the Improviser module will send the Low
on Memory (i.e. danger_signal

) to all the processes.

Fig. 1. System diagram showing low memory improviser interacting with

processes and Kernel

The Low memory improviser Module is the only addition
to the existing system. Also some modification in the kernel
code is expected.

V.

IMPROVED LOW MEMORY HANDLING ALGORITHM

The Fig. 2 shows the Flow Graph for the proposed

system. Initially, the

danger_threshold

will be set by the

system. Now, new memory requests are fulfilled till the

danger_threshold

is not crossed. Once it crosses, a system

generated signal will be sent to all the processes in the

system.

The processes in response to this signal will start freeing

some memory which was allocated to it. At the same time the

module will record the amount of memory freed by each

process as Obeying Factor.

Later, the threshold will be checked again, and if the

threshold is getting crossed then we have to compulsorily call

the OOM killer. But, this time the OOM killer will use the

Obeying Factor along with the application usage history for

finding the candidate to be killed.

Fig. 2. Flow graph for memory request/ allocation

VI.

PERFORMANCE METRICS

Performance of computer system depends on effective

and efficient execution of the applications on the system. The

system will be tested with some set of dummy processes say

50, that will try to eat off the memory. The system will also

have some innocent process. With time OOM will occur and

hence in that situation all the modules prescribed here

will

start functioning.

The number of times the OOM killer is called is also a

performance metric, because it is a very resource intensive

task. Also, how many processes were killed in the system for

proper operation. Minimum number of processes to be killed

is desirable. And, at final, the responsiveness of applications

would also be considered as performance metric to calculate

overall system efficiency.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020176

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

194

VII. CONCLUSION

Applications can shrink and grow their memory usage

dynamically depending on the current memory pressure on

system. An improved algorithm for low memory handling in

Linux is proposed in this paper. With the proposed approach

we are providing a mechanism by which the applications

would be informed dynamically when the system is low on

memory. This avoids calling OOM killer frequently and

hence improves the performance. The applications usage

history will also be used when deciding its priority for killing

by OOM.

Users or system administers do not have the ability to

properly tune the OOM killer according to their demands.

The tools that provide administers the control over OOM

killer have very limited functionality. The future work may

consider the involvement of the users in deciding the smarter

OOM policies.

ACKNOWLEDGMENT

We would like to acknowledge Dr. Krishna Kumar,

(former faculty, Department of computer Science and
Engineering, NIT Calicut) for his help and support during
this work.

REFERENCES

1.

Mauricio Lin and Ville Medeiros , “ Memory Management Approach

for Swap-less Embedded Systems”, ACM Linux journal Archives,
Issue #140 Dec, 2005

2.

Rajesh Prodduturi and Deepak Phatak , “ Effective Handling of Low

Memory scenarios in Android “ , IIT Bombay Master Thesis, June
2013 , available at

http://www.it.iitb.ac.in/frg/wiki/images/8/8c/113050076_Rajesh_Prodd

uturi_Stage-II_report.pdf

3.

K. Y. Sim, F.-C. Kuo, and R. Merkel., “Fuzzing the out-of-memory

killer on embedded Linux: an adaptive random approach. “,

Proceedings of the 26th Annual ACM Symposium on Applied
Computing (SAC 2011), TaiChung, Taiwan, 21-24 March 2011, pp.

387-392

4.
 “OOM Killer for embedded Linux System. “ , Available at

http://www.mnis.fr/en/ support/ doc/ oomkiller/

5.

Goldwyn Rodrigues , “ Taiming the OOM Killer” Feb. 2009 , Article

#317814 Available at http://lwn.net/Articles/317814/

6.

“ Error Notification Support for SIGDANGER signal. “ IBM
Knowledge center, Available at

http://www01.ibm.com/support/knowledgecenter/SSPHQG_7.1.0/com.i

bm.powerha.insgd/ha_install_error_sigdanger.htm

7.

Jonathan Corbet , “
LSFMM : Improving the out-of-memory killer.” ,

April 2013 , LSFMM Summit 2013, Article, Available at

http://lwn.net/Articles/548180/

8.

Corbet, “ Respite from the OOM Killer.”, Article, Sept. 2004 ,

Available at http://lwn.net/Articles/104179/

9.

Mel Gorman, “ Out of Memory Management. “, Book “ Understanding
the Linux Virtual Memory Manager" , Available at

https://www.kernel.org /doc/

gorman/html/understand/understand016.html

10.

David Rientjes , Source code for Out of memory management in Linux

, oom_kill.c , Available at http://lxr.free-

electrons.com/source/mm/oom_kill.c

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020176

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

195

