
Efficient Load Balancing and Dynamic Resource

Allocation in Cloud Environment

Sridevi S

Ramanujan Computing Center

Anna University

Chennai, India

Chitra Devi D

Ramanujan Computing Center

Anna University

Chennai, India

Dr. V. Rhymend Uthariaraj

Professor and Director, Ramanujan Computing Center

Anna University

Chennai, India

Abstract — The overall performance of cloud is influenced

by the scheme adopted to balance the load among the Virtual

Machines. An efficient way to handle both dependent and

independent tasks is the need of the hour. The problem is to

optimize cloud utilization by devising a strategy which handles

task scheduling and load balancing effectively. Various

algorithms exist for load balancing and scheduling in cloud. The

existing algorithms are studied. An algorithm which includes

parameters such as processing capabilities of Virtual Machines,

current load on the Virtual Machines, job lengths and job

interdependencies are considered to propose an algorithm which

outperforms the other existing algorithms. Results prove that

the proposed algorithm performs better than the existing ones in

terms of execution time, number of tasks delayed before getting

executed in a VM and the number of task migrations.

Keywords— cloud; computing; load balancing; resource

allocation

I. INTRODUCTION

Cloud computing is an on demand elastic service in which
shared resources, information, software and other devices are
provided according to the clients requirement at specific time.
It can be viewed as solution where data storage and any
processing take place without the user being able to pinpoint
the specific computer carrying out the task. In Cloud
computing, the availability and performance of services are
two important aspects to be raised, because users require a
certain level of quality service in terms of timeliness of their
duties in a lower cost.

Cloud computing uses the concepts of scheduling, load
balancing, distributed computing and migrate the tasks to
under-utilized Virtual Machines (VM) for effectively sharing
the resources like hardware, software and other devices on
demand. The goal of scheduling algorithms in distributed
systems is spreading the load on processors and maximizing
their utilization while minimizing the total task execution
time. Job scheduling, one of the most famous optimization
problems, plays a key role to improve flexible and reliable
systems. Customers are primarily expecting in the reduction

of the overall completion of time of tasks on the machines.
Virtual Machine is the execution unit of the Cloud and it
forms the foundation of the cloud technology. Virtualization
can be applied to variety of computer resources:
Infrastructure such as Storage, Network, Compute
(CPU/Memory etc), Platform (such as Linux/Windows OS)
and Software as Services.

II. LITERATURE SURVEY

A. Related Work

The work by Junwei Cao, Keqin Li and Ivan Stojmenovic
provides new insights into power management and
performance optimization. [1] For multiple heterogeneous
multi core server processors across clouds and data centers,
the aggregated performance of the cloud of clouds can be
optimized by load distribution and balancing. Energy
efficiency is one of the most important issues for large scale
server systems in current and future data centers. The multi
core processor technology provides new levels of
performance and energy efficiency. The paper aims to
develop power and performance constrained load distribution
methods for cloud computing in current and future large-scale
data centers. In particular, it addresses the problem of optimal
power allocation and load distribution for multiple
heterogeneous multi core server processors across clouds and
data centers.

The elasticity of Cloud infrastructures makes them a
suitable platform for execution of deadline-constrained
workflow applications, because resources available to the
application can be dynamically increased to enable application
speedup. [2] To mitigate effects of performance variation of
resources on soft deadlines of workflow applications, an
algorithm that uses idle time of provisioned resources and
budget surplus to replicate tasks is proposed. Simulation
experiments with four well-known scientific workflows show
that the proposed algorithm increases the likelihood of
deadlines being met and reduces the total execution time of
applications as the budget available for replication increases.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020612

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

758

The algorithm of Honey Bee Behavior inspired load
balancing [3] (HBB-LB), which aims to achieve well
balanced load across virtual machines for maximizing the
throughput. This algorithm balances the priorities of tasks on
the machines in such a way that the amount of waiting time
of the priority tasks in the queue is minimal,. Whenever a
VM is heavily loaded with multiple tasks, these tasks have to
be removed and submitted to the under-loaded VMs of the
same data center. In this case, when the removal of more than
one task from a heavily loaded VM and if there is more than
one VM available to process these tasks, the tasks have to be
submitted to the VM such that there will be a good mix of
priorities.

Many of the touted gains of cloud computing comes from
resource multiplexing through virtualization technology. Here
the system uses virtualization technology to allocate data
center resources dynamically based on application demands.
They introduced the concept of “Skewness” [4] to measure the
unevenness in the multidimensional resource utilization of a
server. By minimizing skewness, the different types of
workloads have been combined to improve the overall
utilization of server resources,. The significant contributions
of this work are that they developed a resource allocation
system that can avoid overload in the system effectively while
minimizing the number of servers used. The introduction of
“skewness” concept is to measure the uneven utilization of a
server. By minimizing skewness, they improved the overall
utilization of servers in the face of multidimensional resource
constraints. They designed a load prediction algorithm that
can capture the future resource usages of applications
accurately without looking inside the VMs. The algorithm can
capture the rising trend of resource usage patterns and help
reduce the placement churn significantly.

A better load balance model has been introduced for the
public cloud based on the cloud partitioning [5] concept with
a switch mechanism to choose different strategies for
different situations. The algorithm applies the game theory to
the load balancing strategy to improve the efficiency in the
public cloud environment. The load balancing strategy is
based on the cloud partitioning concept. After creating the
cloud partitions, the load balancing starts, when a job arrives
at the system, with the main controller deciding which cloud
partition should receive the job. The partition load balancer
then decides how to assign the jobs to the nodes. When the
load status of a cloud partition is normal, this partitioning can
be accomplished locally. If the cloud partition load status is
not normal, this job should be transferred to another partition.
The cloud partition balancer gathers load information from
every node to evaluate the cloud partition status.

III. SCHEDULING AND LOAD BALANCING

The Scheduler has the logic to find the most suitable VM
and assign the tasks to VMs based on the algorithm used. The
scheduler places the jobs in the most suitable VMs based on
the least utilized VM at that particular job arrival time.

Fig 1. Scheduling and Load Balancing Design

Load Balancer decides the migration of task from a
heavily loaded VM to an idle VM or least loaded VM at run
time, whenever it finds an idle VM or least loaded VM by

utilizing the resources current status information. Resources
monitor is available as part of Load Balancer and it
communicates with all the VMs resources prober and collects
the VM capabilities, current load on each VM, number of
jobs in execution/waiting queue in each VM. The Task
Requirement is provided by the user which includes the
length of the tasks to be executed and transfer the
requirements to the scheduler for its operative decisions.

A. Scheduling and Load Balancing design

The various modules of the Scheduling and Load
Balancing design are discussed below:

 Job Queue: All the client’s Job requests are reaching the
Request Queue in the order of its arrival. The priority or
the length of the jobs has not been considered in the
Queue. When a job has been taken-out for VM
assignment by the Scheduling Controller using the
algorithm of First-In-First-Out (FIFO), it will be moved
out of the Request Queue.

 Dependency Task Queue: This queue will contain the
tasks, which depends on the other tasks present in the
VMs. Once all the child tasks of the tasks present in this
queue got completed its execution the this parent task will
be taken for the execution by assigning it to the VM.

 Task Manager: This module receives the Job and verifies
the job whether it is a complete independent task or it
contains multiple tasks. In case, if it contains multiple
tasks, then it verifies the inter-dependency between the
multiple tasks. Now, all the independent tasks will be
directly assigned to the VMs. The dependent tasks will be
notified to the scheduler so that parent tasks are scheduled
after child tasks are executed.

 Scheduler: The scheduler selects the appropriate VMs
based on the configured algorithms. This Scheduler
collects the resources information through the Load
Balancer from the Resource Monitor. It calculates the
processing capacity of each of the VMs and then it applies
the configured algorithm to find the appropriate VM for
the given job.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020612

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

759

 Load Balancer: Load Balancer (LB) calculates the ratio
between the number of jobs running and the number of
VMs. If the ratio is less than 1, then it communicates the
scheduler to identify a VM for the job else it will calculate
the load on each of the VM using the Job Execution List
of the VMs. If the utilization is less than the 20% then the
least utilized VM will be allotted else the scheduler will
be communicated to identify the most suitable VM for the
job. Once the appropriate VM has been identified the Job
will be assigned to that VM.

 Resources: The configured datacenters, hosts and their
VM and their Processing Elements form the set of
resources available for computing. The resources are
probed for idleness and for heavy load so that the job
requests are effectively allocated to an appropriate
resource.

B. Algorithms

The following scheduling and load balancing algorithms
are implemented for functionalities such as scheduling and
load balancing. WRR++ is the proposed algorithm. The RR
and WRR are existing algorithms which are implemented for
carrying out a comparative study.

1) RR: The Round Robin algorithm allocates task to the

next VM in the queue irrespective of the load on that VM.

RR works well in most configurations, but could be more

effective if the VMs are of roughly equal processing capacity,

speed and memory.

2) WRR: Here the VMs are ordered in a circular queue

based on weightage assigned to them. The incoming requests

are then allocated to the ordered VMs in a circular fashion.

WRR does not take into account of the load on the VMs or

the length of the tasks allocated to the VMs. Hence, small

tasks may be assigned to a VM with high processing

capability and vice versa. WRR becomes equivalent to RR

when the VM configuration, VMs processing capacity and

speed are similar.

3) WRR++: WRR++ is an algorithm which is proposed

as an improvement over the existing WRR algorithm. Here

the WRR++ considers processing capabilities of the VMs,

current load on the VMs and estimated job execution time.

The algorithm works with coordination among three major

modules of the system. The modules are,

a) Static Scheduler: This module does the functionality

of initial job placements by considering the total number of

VMs provisioned and the number of job requests.

b) Dynamic Scheduler: The dynamic scheduler takes

care of run time job placements by taking into account of

current load on the VMs, the nature of the task arrival and

the instance at which the task requests are submitted.

c) Load Balancer: The load balancer checks for the

current load and remaining time estimated for task

completion and balances the load on the VMs by migrating a

task from heavily loaded VM to a lightly loaded VM.

C. Mathematical Model

The problem is to assign dynamically arriving dependent /
independent tasks to VMs and balance the load on the VMs
to achieve reduced response latency and maximize resource
utilization. Let us consider there are n number of VMs and m
number of tasks. The set of all VMs are represented as VMj
where j varies from 1 to n and the set of all task requests are
represented as Ti where i varies from 1 to m.

Processing time of all tasks in a VMj can be defined as,

 φj= ∑
m

i = 1 PTij      

where PTij is the processing time of i
th

task Ti on j
th

 virtual
machine VMj. The factor gives the minimum time the VM is
required to be provisioned and is running to execute all the
tasks assigned to it.

Processing capacity of a VM can be denoted as follows,

 μj = n(pe) * mips(pe)     

where μj is the processing capacity of the VMj, n(pe) is the
number of processing elements in the VM and mips(pe) is the
Million Instructions per second of a PE.

The earliest start time and latest finish time of a task Ti
are represented as tes(i) and tlf(i) respectively. tes(i) is the earliest
time a task is able to start, which happens when all its child
tasks complete execution as early as possible. It is
represented as follows:

tes(i) = max (tes(children(i)) + tburst(i)), if dependent (3)

 tes(a) + tburst(a), if independent

 where children(i) denotes the set of all child tasks for
task Ti, tburst(i) is the burst time needed to complete the task Ti
and Ta represents the preceding independent task.

Tlf(i) is the latest time a task can finish without exceeding
the maximum provisioning time. This happens when any one
of its child tasks complete execution as late as possible. It is
represented as follows:

tlf(i) = max (tlf(children(i)), if dependent (4)

 tls(a)+ tburst(a), if independent

where tls(a) is the latest time a task can be scheduled to a
VM without leading to starvation.

The Schedule time of task Ti is tsch(i). It is the time at
which the task has been scheduled for execution. This
parameter can assume any value between tes(i) and tlf(i). Our
problem is to identify the right VM and right time to schedule
the task such that the VM utilization is high and load on the
VMs are balanced well. Formally,

 tes(i) ≤ tsch(i) ≤ tlf(i) (5)

 The expected task execution time requirement is given by
γi. A practical approach is to predict the length of the next
burst, based on some historical measurement of recent burst
times for this process. One simple, fast, and relatively
accurate method is the exponential average, which can be
defined as follows.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020612

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

760

 γi+1 = α * γi+1 + (1.0 - α) * γi (6)

 The VM utilization utilj is calculated as,

 utilj = VM CPU usage (in MHz) (7)

 n * core frequency (in MHz)

 where n is the number of VMs running.

 Our optimal load balancing problem for multiple
heterogeneous multi core VMs can be specified as follows:
Given the number of VMs n, the number of tasks m, the
capacity of a VM μj, expected task execution time
requirement γ, the task arrival rate to the VMs λ and the load
threshold τ, find the best VM for the jobs in the job queue
with VM utilization utilj, such that the average task response
time T(λ1, λ2,…,λm,) is minimized and overall VM utilization
util(VM1,VM2,…VMj) is maximized, subject to the constraints,
F(λ1, λ2,…,λm) = λ, where F(λ1, λ2,…,λm)= (λ1+λ2+...+λm),
λi follows poisson distribution of arrival, the overall VM
utilization varies between 0 ≤ utilj ≤ 1, processing capacity of
the VMs μj varies between 0 ≤ μj ≤ 1 and tes(i) ≤ tsch(i) ≤ tlf(i) as
per (5)

IV. EXPERIMENTAL RESULTS

The performance of the algorithm has been analyzed
based on the results of simulation done using the CloudSim.
The CloudSim framework is studied and the framework is
modified to include the various LB algorithms and perform a
comparative study.

In the following illustrations, the overall execution time in
Time Shared (TS) and Space Shared (SS) environments are
analyzed in the RR, WRR, WRR++ algorithms under the
combination of heterogeneous & homogenous resource
conditions and heterogeneous & homogenous job nature with
cloudlet allocation policy being time and space shared.

Table 1 gives the cloud configuration details based on
which the following results are obtained and performance
analysis is done. The number of VMs is varied from 10 to
100 by increments of 10 to analyze the parameters such as
execution time in TS and SS execution modes.

TABLE I. ENTITIES AND THEIR CONFIGURATIONS

Sl

No
Entity Quantity

1 Data Center 1

2 Hosts in DC 200

3
Processing Elements

(PE)
8/16

4 PE Processing Capacity
125/355/455

MIPS

5 Host RAM Capacity 2/8 GB RAM

6 VM
10 to 100

incremented by

10

7 No of PE to VM 1

8
VMs PE Processing

Capacity

150/300/90/12

0/93/112/105/2
25

9 VM RAM capacity 1000 MB

10 VM Manager Xen

A. Performance Analysis

The algorithms are implemented and an extensive
comparative study is conducted by executing them in time
shared and space shared execution environments. The
analysis is as follows:

The time taken for a given number of tasks to complete
on a given configuration is analysed by varying the number
of VMs for all the given algorithms. The analysis proves that
the WRR++ outperforms existing LB algorithms as it
includes VM and task status information for resource
allocation unlike WRR and RR as shown in Fig. 2 and 3.

1) Based on Overall Execution Time (Time Shared):

Results proved that WRR++ delivers a faster completion time

than the other load balancing algorithms in the heterogeneous

resources. The WRR++ algorithm considers the estimated job

execution time along with processing capacity of the

heterogeneous VMs to assign the job. So, the lengthy jobs

get assigned to the higher capacity VMs in the heterogeneous

environments. This helps to complete the job in a shorter

time.

Overall Execution Time (TS)

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10

No of VM (X10)

E
x
e

c
u

ti
o

n
 T

im
e Round Robin(ms)

Weighted Round

Robin(ms)

Weighted Round

Robin ++(ms)

Fig 2. Overall Execution Time (TS)

Overall Execution Time (SS)

0

1000

2000

3000

4000

5000

1 3 5 7 9

No of VM (X10)

E
x
e

c
u

ti
o

n
 T

im
e

Round Robin(ms)

Weighted Round

Robin(ms)

Weighted Round

Robin++(ms)

Fig 3. Overall Execution Time (SS)

2) Based on Overall Execution Time (Space Shared): The

overall execution time for SS mode of execution is given in

Fig 3. WRR++ performs better than WRR and RR even in SS

mode. SS mode of execution is the way of task execution in

VMs where the core is entirely allocated for a specific task

before any other task is allowed to get executed. Whereas TS

is the VM’s task execution strategy where tasks are executed

parallely with a specific time slot for each task. As the

number of VMs are increasing the WRR++ performs better

than the other algorithms in discussion.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020612

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

761

V. CONCLUSION AND FUTURE WORK

Cloud based applications are influenced heavily by the
way LB is handled. For end users, the LB capability adopted
is one of the major factors based on which they select a cloud
service provider. For cloud providers, LB capability directly
relates to the service quality with response time as QoS
parameter. And this in turn directly influences the revenue.
Thus an efficient LB strategy is inevitably required to build
any cloud architecture.

In this paper the algorithms RR, WRR and WRR++ are
discussed for scheduling, load balancing and task
independence and dependency scenario. These algorithms are
having three different stages to handle the three different
scenarios in the environment life cycle. The performance
analysis and experiment results of this algorithm proved that
the WRR+ algorithm is most suitable to the heterogeneous /
homogenous jobs with heterogeneous resources (VMs) than
the other Round Robin, Weighted Round Robin algorithms.

As part of future work, other performance analysis
parameters such as number of task migrations between VMs,
Million Instructions wasted due to migration can be analyzed
for the various algorithms. Many more tests are required to
guarantee high system availability and responsiveness. The
load threshold is to be evaluated and fixed comprehensively
in order to migrate tasks at the right time when the VM starts
to get heavily loaded.

ACKNOWLEDGMENT

We wish to express my whole hearted thanks to Mr. K.
GokulNath, Anna University, Chennai for his valuable
suggestions, constant encouragement and invaluable inputs
which was the driving force to complete the project.

 We are extremely indebted to our family members and
friends for their adorable support throughout the development
of the project.

REFERENCES

[1] Junwei Cao, Keqin Li, Ivan Stojmenovic, “Optimal Power Allocation
and Load Distribution for Multiple Heterogenous Multicore Server
Processors across Clouds and Data Centers” IEEE Transactions On
Computers, Vol. 63, No. 1, January 2014.

[2] Rodrigo N. Calheiros, Rajkumar Buyya, “Meeting Deadlines of
Scientific Workflows in Public Clouds with Tasks Replication” IEEE
Transactions on Parallel and Distributed Systems, Vol. 25, No. 7, July
2014.

[3] L.D.Dhinesh Babu P. Venkata Krishna, “Honey Bee Behavior inspired
Load Balancing of tasks in Cloud Computing Environments” Applied
Soft Computing, January 2013.

[4] Zhen Xiao, Weijia Song, Qi Chen, “Dynamic Resource Allocation
Using Virtual Machines for Cloud Computing Environment” IEEE
Transactions on Parallel and Distributed Systems, Vol. 24, No. 6, June
2013.

[5] Gaochao Xu, Junje Pang, Xiaodong Fu, “A Load Balancing Model on
Cloud Partitioning for the Public Cloud” Tsinghua Science and
Technology, Vol. 18, No. 1, February 2013.

[6] Xia Junjie Ni, Yuanqiang Huang, Zhongzhi Luan, Juncheng Zhang,
Depei Qian, “Virtual Machine Mapping Policy Based on Load
Balancing in Private Cloud Environment”, 2011 International
Conference On Cloud And Service Computing.

[7] M.Arumbrust et al., “Above the clouds: A Berkeley View of Cloud
computing, “ technical report, Univ.of Califoronia, Berkeley, Feb.2009.

[8] L.Siegele, “Let It Rise; A Special Report on Corporate IT,”The
Economist, Vol.389, PP. 3 – 16, Oct.2008.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R.
Neugebauer, I. Pratt, and A.Warfield, “Xen and the Art of
Virtualization, “ Proc.ACM Symp. Operating Systems Principle
(SOSP’ 03), Oct 2003.

[10] “Amazon elastic compute cloud (Amazon EC2),”
http://aws.amazon.com/ec2/, 2012.

[11] C.Clark, K.Fraser, S.Hand, J.G.Hansen, E.Jul, C.Limpach, I.Pratt, and
A.Warfield, “Live Migration of Virtual Machines, “
Proc.Symp.Networked Systems Design and Implementation (NSDI
’05), May 2005.

[12] M.Nelson, B-H. Lim, and G.Hutchins, “Fast Transparent Migration for
Virutual Machines, “ Proc. USENIX Ann. Technical Conf., 2005.

[13] Rodrigo N.Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A.f.De
Rose, and RajkumarBuyya “Cloudsim: A Toolkit for Modeling and
Simulation of cloud Computing Environments and Evaluation of
Resource Provisioning Algorithms” Cloud Computing and Distributed
systems (CLOUDS) Laboratory, Department of Computer Science and
software Engineering, The University of Melbourne, Australia.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020612

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

762

