
Efficient Majority Logic Fault Detection With

Eg-Ldpc Codes for Memory Applications

Mrunali Namdeorao Ingole

Department of Electronics and Telecommunication Engineering

Patel Institute of Engineering and Science

Bhopal, India

 Mrs. Sameena Zafar

H.O.D Department of Electronics and Telecommunication Engineering

Patel Institute of Engineering and Science

Bhopal, India

Abstract— now a day, a method was proposed to accelerate

the majority logic decoding of difference set low density

parity check codes. This can be implemented serially with

simple hardware but require a large decoding time and also

useful as majority logic decoding. This increases the memory

access time for memory applications. The method detects a

word has errors in 1st iterations of majority logic decoding,

and if are no errors the decoding ends without completing the

rest of the iterations. Since most of the words in a memory

will be error-free, and average decoding time is greatly

reduced. In this brief, we study the application of a similar

technique to a class of Euclidean geometry low density parity

check code (EG-LDPC) which are one step majority logic

decidable. The result obtained show that this method is also

effective for EG-LDPC codes. Extensive simulation results

are given to accurately estimate the probability of error

detection for different code size and numbers of errors.

Keywords— Error correction codes, Euclidean geometry low-

density parity check (EG-LDPC) codes, majority logic decoding,

memory)

I INTRODUCTION

Error correction codes are usually used for protecting

memories from soft errors, which change the logical value of

memory cells without damaging the circuit[1]. A soft error

occurs when a radiation event causes enough of a charge

disturbance for reversing or flips the data state of a memory

cell, register, latch, or flip-flop. The error is said to be “soft”

because the circuit/device is not permanently damaged by

the radiation, if new data are written in the bit, the device will

store the data correctly. The soft error is also referred as a

single event upset (SEU)[2] . Recently proposed a most

useful advanced codes . With the use of these codes a large

number of errors can be corrected, but generally it require a

complex decoders. Decoding methods for the class of

majority-logic decodable codes, and a class of codes that

perform well with iterative decoding in spite of having many

cycles of length 4 in their Tanner graphs, are presented[4].

One step majority logic decoding can be implemented with

very simple circuitry, but require a large decoding times. In a

memory, this increases the memory access time and this is

an important system parameter.

By using one step majority logic decoding only a few classes

of codes can be decoded. Out of these, some differential set

low density parity check (DS-LDPC) codes, and Euclidean

geometry low density parity check (EG-LDPC) code[1]

LDPC code 1s a block code with parity-check matrices. It

requires a very small number of non-zero entries. In which

decoding complexity increases linearly with the code length

and also increases a minimum distance linearly with code

length. LDPC code is not differ from other block codes. The

existing block codes can be successfully used with the LDPC

iterative decoding algorithms when they are represented by a

sparse parity-check matrix. Usually it is not practically find a

sparse parity-check matrix for an existing code. LDPC codes

are designed by constructing first with a sparse parity-check

matrix and then determining a generator matrix for the code.

The largest difference between LDPC codes and classical

block codes is the decoding process. Classical block codes

are usually decoded with ML like decoding algorithms and it

is usually short and designed algebraically for making this

task less complex. These codes are decoded iteratively with a

graphical representation of their parity-check matrix[3]

II PROPOSED SYSTEM

Introduction

The proposed technique was implemented in VHDL and

synthesized, showing that for codes with large block sizes the

cost is low because the existing majority logic decoding

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070622 596

circuitry is reused for performing error detection and only

some extra control logic is required. Codes with small words

and affected by a small number of bit flips, it’s practical to

generate and test all possible error combinations. If the code

size increases, the number of bit flips also increases, it is not

necessary to test all possible combinations. This means that

in some cases it may be more convenient to use an EG-LDPC

code and keep a word size compatible with existing designs

than the use of DS-LDPC code which requires a different

word size or a shortened version of that code. When word

size is used which is a power of two, there would be a bit is

not used by the EG-LDPC code.

B] Efficiency of EG-LDPC

The comparison of the rate of the EG-LDPC code with other

codes is more important to understand if the interesting

properties of low-density and FSD-ECC come at the expense

of lower code rates. the code rates of the EG-LDPC codes

are compared with an achievable code rate upper bound

(Gilbert-Varshamov bound) and a lower bound (Hamming

bound). The EG-LDPC codes are not larger than the

achievable Gilbert bound for the same and value and they are

not much larger than the Hamming bound [5].

C] INTRODUCTION TO LDPC CODES

Let ᴄ is a LDPC code with length ɳ and dimension of the

number of information bits ƙ . Let H an (m×n) matrix which

denotes a parity check matrix of ᴄ. The Tanner graph of an

LDPC code, Ҫ is a bipartite graph having two sets of nodes:

variable (bit) nodes and check (constraint) nodes. The check

nodes (variable nodes) connected with a variable node (check

node) are said to be its neighbors. The degree of a node is the

number of its neighbors. In a (γ,ρ) regular LDPC code, here

each variable node has degree γ and each check node has

degree ρ. The girth ᶢ is the length of the shortest cycle in Ҫ .

A check node is referred as satisfied if the sum of all

incoming messages has even parity and unsatisfied otherwise.

The corresponding H matrix is given by

The Gallagher B algorithm on the BSC operates passing

binary messages along with the edges of the Tanner graph of

LDPC code. Every iteration of message starts with sending

messages from variable nodes and ends by sending messages

from check nodes to variable nodes. For a variable node ᶹ

(check node ᴄ), let ᴇ(ᶹ) (ᴇ(ᴄ)) denote the edges incident on

ᶹ(ᴄ) .

Fig. 2. Illustration of message passing. (a) Variable to check message. (b)

Variable

to check message in case of tie. (c) Check to variable

message.

 Also, let ᵣ(ᶹ) be the received value of node ᶹ. Let the degree

of a variable node denoted by ј . A threshold is denoted by

bᵢ,ј is determined for every iteration i and variable degree ј.

Let mᵢ(e) be the messages passed on an edge e from variable

node to check node and vice versa in iteration i respectively.

Then for each and every node ᶹ , the Gallagher B algorithm

passes the following messages in the iteration.[6]

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070622 597

Fig. 2 illustrates the message passing rules for different cases.

D] Majority Logic Decoder/Detector

 Results of these prove the hypothesis for the codes with small
word size (N=15 and N=63). For N=255 up to three errors
have been completely checked while for N=1023 only single
and double error combinations have been completely checked.
For complementing the results of the complete tests for large
codes and number of errors, random error patterns have been
used by using simulations. One billion error combinations are
tested. For the number of errors, a similar reasoning applies,
the large number of errors occur, the greater the probability,
odd number of errors occurs in at least one equation. Finally it
shows that the possibility of undetected errors are differ for
an even and an odd number of errors as in the latter case, one
of the errors occur in a bit that is not tested by any equation.
The simulation results suggest that all errors corrupting three
and four bits would be number of errors. The explanations of
decreased word size as follows, the larger the word size, the
large number of the number of MLD check equations in Table
I and therefore it is more unlikely the errors occur in the same
equation. For the number of errors, a similar reasoning applies
the more number of errors, the larger the possibility that an
odd number of errors occurs in at least one equation. Finally it
must be show that the possibilities of undetected errors are
differ for an even and an odd number of errors as in the latter
case, any one of the errors must occur in a bit which is not
tested by any equation. The simulation result shows that all
errors corrupting three and four bits would be observed in the
first three iterations. For errors affecting a large bits, there is
less possibility of not detected in those iterations. For greater
word sizes, the probabilities are sufficiently less which is
acceptable in many applications [3].

 In summary, the first three iterations
will find all errors corrupting four or fewer bits, and almost
other detectable error affecting greater bits. This is a slightly
bad performance than in the case of DS-LDPC codes where
errors affecting five bits were always found. The majority
logic circuitry is very simple for EG-LDPC codes, as the
number of equations is a power of two and an approach based

on sorting networks proposed which can be used for reducing
the cost of the majority logic decoding. EG-LDPC codes have
block lengths closer to a power of two, thus matched well to
the requirements of modern memory systems. This may
means that in many cases it may be more convenient the use
of EG-LDPC code and maintain a word size adjustable with
existing designs i.e. power of two than the use of DS-LDPC
code having a different word size or a short version of that
code. By using word size with a power of two, there would be
a bit which is not utilized by the EG-LDPC code. This bit can
be utilized for a parity covering all bits in the word that would
find all errors corrupting an odd number bit. In that case, the
design using the EG-LDPC would also find all errors
corrupting five or fewer bits.[3]

E] Need For Error Detection

 Physical defects and environmental interference in the

communication medium cause random bit errors during

transmission of data. Error coding is one of the methods of

detecting and correcting these errors for ensuring information

is transferred from its source to its destination. In computer

memory, error coding is used for fault tolerant computing,

magnetic and optical data storage media, satellite and deep

space communications, network communications, cellular

telephone networks, and almost any other form of digital data

communication. It also uses mathematical formulas to encode

data bits at the source into larger bit words for

transmission[3].

 The “code word" can be decoded at

the destination for retrieving the information. In the code

word the extra bits give redundancy, according to the coding

scheme used the destination uses the decoding process to

determine if the communication medium introduced errors

and in some cases correct them so that the data need not be

transmitted again. Depending on the types of errors, different

error coding schemes is chosen and whether or not again data

transmission is possible. Good communications technology

and faster processors makes more complex coding schemes,

with greater error detecting and correcting capabilities,

possible for small embedded systems, which allow for more

robust communications. The tradeoffs in between coding and

bandwidth overhead, coding complexity and allowable

coding delay between transmissions, must be considered for

each application.[3]

III.,PARITY CHECK CODE

 For simplicity, we are discussing the even-parity checking,

where the number of 1’s should be an even number. It’s also

possible of using an odd-parity checking, where the number

of 1’s should be odd.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070622 598

One Dimensional Parity Check

The most common and less costly mechanism is the simple

parity check for error- detection. A redundant bit is said to be

parity bit in this technique is attached to every data unit so the

number of 1’s in the unit with the even parity. Blocks of data

are subjected to a check bit or Parity bit in the form of

generation from the source, where a parity of 1 is added to

the block when it contains an odd number of 1’s (ON bits)

and 0 is added when it contains an even number of 1’s. At the

receiving end the parity bit is computed from the received

data bits and these bits is compared with the received parity

bit. This scheme makes the total number of 1’s even, that’s

why it’s called even parity checking.

Two Dimensional Parity Check

By using two-dimensional parity check, performance can be

improved, which organizes the block of bits in the form of a

table. There are calculated for each row, which is equal to a

simple parity check bit. These bits are also calculated for all

columns then both are sent along with the data. At the

receiving end these are compared with the parity bits

RESULT

This method is applied to the class of one step MLD EG-

LDPC codes. The conclusions are introduced first in terms of

a hypothesis to present the results, and then it is validated by

simulation and also a theoretical analysis is done. The results

obtained can be summarized in the following assumption.

 “Given a word read from a memory protected with one step

MLD EG-LDPC codes, and corrupted up to four bit-flips, all

errors can be obtained in only three decoding cycles”.

 This assumption is differ from the DS-LDPCs codes in that

case errors corrupted five bits always detected. This is cause

due to structural differences between EG-LDPC and DS-

LDPC codes, which will be detailed. By assuming the above

assumption, the EG-LDPC codes is implemented and tested.

For codes with small words and corrupted by a small number

of bit flips, it is used to generate and test all error

combinations. As the code size, the number of bit flips also

increases. Therefore the simulations are done in two ways, by

checking all error combinations if it is feasible and by

checking randomly generated combinations in the rest of the

cases. The results for the exhaustive checks. For N=255 up

to three errors have been completely checked while for

N=1023 only single and double error combinations have been

checked. To complement the results of the exhaustive checks

for greater codes and number of errors, simulations is done

using random error patterns. One billion error combinations

are checked. The results for errors corrupting more than four

bits are shown in Table, since for errors up to corrupting four

bits no undetected errors. It can be noted that for errors affect

more than four bits, there are less number of error

combinations that will not observed in the first three

iterations. This number is reduced with word size and also

with number of errors. The reduced word size can be

explained as follows, the greater the word size, the greater the

number of MLD check equations and therefore it is occur in

the same equation. Finally it must be noted that the

possibilities of undetected errors are differ for an even and an

odd number of errors as in the last case, one of the errors

must occur in a bit which is not tested by any other equation.

 The simulation results noted that all errors corrupting

three and four bits would be obtained in the first three

iterations. For errors corrupting a large number of bits, there

is a small possibility of not found in those iterations. The

possibilities are sufficiently small to be acceptable in many of

the applications for large word sizes. The first three iterations

will detect all errors corrupting four or fewer bits, and almost

every other findable error corrupting more bits. The majority

logic circuitry is simple for EG-LDPC codes. In addition,

EG-LDPC codes have block lengths nearer to a power of two,

thus matching well to the requirements of modern memory

systems. This is means that, in some cases it may be more

convenient to use an EG-LDPC code than using a DS-LDPC

code having a different word size or a short version of that

code and keep a word size compatible with existing designs

i.e. power of two. By using word size which is a power of

two, then a bit is not used by the EG-LDPC code. The design

using the EG-LDPC code would also detect all errors

corrupting five or fewer bits.

Table: Undetected errors with one billion random errors

combinations

CONCLUSION

In this brief, the error detection during the first iterations of

serial one step Majority Logic Decoding of EG-LDPC codes

has been studied. The main objective was to reduce the

decoding time by stopping the decoding process when there

are no errors detected. The simulation results show that all

tested combinations of errors affecting up to four bits are

detected in the first three iterations of decoding. These results

extend the ones recently presented for DS-LDPC codes,

making the modified one step majority logic decoding more

attractive for memory applications. The designer now has a

larger choice of error correction and capabilities word

lengths. Future work includes extending the theoretical

analysis to the cases of three and four errors. More generally,

determining the required number of iterations to detect errors

affecting a given number of bits seems to be an interesting

problem. A general solution to that problem would enable a

fine-grained tradeoff between error detecting capability and

decoding time.

N 5

errors

6

errors

7

errors

8

errors

9

errors

10

errors

11

errors

12

errors

63 5672 5422 1079 1174 823 817 537 549

255 23 10 0 0 0 0 0 0

1023 0 1 0 0 0 0 0 0

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070622 599

REFERENCES

[1] Pedro Reviriego, Juan A. Maestro, and Mark F. Flanagan, (Jan

2013)“Error Detection in Majority Logic Decoding of Euclidean

Geometry Low DensityParity Check (EG-LDPC) Codes,” IEEE

Trans. Very Large Scale Integr.(VLSI) Syst.. vol. 21, no. 1,
[2] Robert C. Baumann, Fellow, IEEE, (Sept 2005)” Radiation Induced

Soft Error in Advanced Semiconductor Technologies,” IEEE Trans.

Device And Materials Reliability, vol. 5, no. 3,
[3] P. Kalai Mani, V. Vishnu Prasath, (March 2014) “Majority Logic

Decoding of Euclidean Geometry Low Density Parity Check (EG-

LDPC) Codes,” International Journal of Innovative Research in
Computer and Communication Engineering, vol. 2, special issue 1.

[4] Heng Tang, Member, IEEE, Jun Xu, Member, IEEE, Shu Lin, Life

Yellow, IEEE< and Khaled A. S. Abdel-Ghaffar, Member, IEEE,

(Feb 2005) “Codes on Finites Geometries,” IEEE Trans. On

Information Theory, Vol. 51, no. 2,

[5] Naeimi.H and A. DeHon, (Apr. 2009) “Fault secure encoder and
decoder for nanomemory applications,” IEEE Trans. Very Large

Scale Integr.

(VLSI) Syst., vol. 17, no. 4,.
[6] Vasic.B and S. K. Chilappagari, (Nov. 2007) “An information

theoretical framework for analysis and design of nanoscale fault-

tolerant memories

I. BASED ON LOW-DENSITY PARITY-CHECK CODES,” IEEE TRANS

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070622 600

