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Abstract— now a day, a method was proposed to accelerate 

the majority logic decoding of difference set low density 

parity check codes. This can be implemented serially with 

simple hardware but require a large decoding time and also 

useful as majority logic decoding. This increases the memory 

access time for memory applications. The method detects a 

word has errors in 1st iterations of majority logic decoding, 

and if are no errors the decoding ends without completing the 

rest of the iterations. Since most of the words in a memory 

will be error-free, and average decoding time is greatly 

reduced. In this brief, we study the application of a similar 

technique to a class of Euclidean geometry low density parity 

check code (EG-LDPC) which are  one  step majority logic 

decidable. The result obtained show that this method is also 

effective for EG-LDPC codes. Extensive simulation results 

are given to accurately estimate the probability of error 

detection for different code size and numbers of errors. 

 

Keywords— Error correction codes, Euclidean geometry low-

density parity check (EG-LDPC) codes, majority logic decoding, 

memory) 

I  INTRODUCTION 

Error correction codes are usually used for protecting 

memories from  soft errors, which change the logical value of 

memory cells without damaging the circuit[1]. A soft error 

occurs when a radiation event causes enough of a charge 

disturbance for reversing or flips the data state of a memory 

cell, register, latch, or flip-flop. The error is said to be “soft” 

because the circuit/device  is not permanently damaged by 

the radiation, if new data are written in the bit, the device will 

store the data correctly. The soft error is also  referred as a 

single event upset (SEU)[2] . Recently proposed a  most 

useful  advanced codes . With the use of these codes  a large 

number of errors can be corrected, but generally it require a 

complex decoders. Decoding methods for the class of 

majority-logic decodable codes, and a class of codes that 

perform well with iterative decoding in spite of having many 

cycles of length 4 in their Tanner graphs, are presented[4]. 

One step majority logic decoding can be implemented  with 

very simple circuitry, but require a  large decoding times. In a 

memory, this  increases  the memory access time and this is 

an important system parameter. 

By using one step majority logic decoding only a few classes 

of codes can be decoded. Out of these, some differential set 

low density parity check (DS-LDPC) codes, and Euclidean 

geometry low density parity check (EG-LDPC) code[1]  

LDPC code 1s a block code with parity-check matrices. It 

requires a very small number of non-zero entries. In which 

decoding complexity  increases linearly with the code length 

and also increases a minimum distance linearly with code 

length. LDPC code is not differ from  other block codes. The 

existing block codes can be successfully used with the LDPC 

iterative decoding algorithms when they are represented by a 

sparse parity-check matrix. Usually it is not practically find a 

sparse parity-check matrix for an existing code. LDPC codes 

are designed by constructing first with a sparse parity-check 

matrix and then determining a generator matrix for the code. 

The largest difference between LDPC codes and classical 

block codes is the decoding process. Classical block codes 

are usually decoded with ML like decoding algorithms and it 

is usually short and designed algebraically for making this 

task less complex. These codes are decoded iteratively with a 

graphical representation of their parity-check matrix[3] 

 

II PROPOSED SYSTEM 

Introduction 

The proposed technique was implemented in VHDL and 

synthesized, showing that for codes with large block sizes the 

cost is low because the existing majority logic decoding 
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circuitry is reused for performing error detection and only 

some extra control logic is required.  Codes with small words 

and affected by a small number of bit flips, it’s practical to 

generate and test all possible error combinations.  If the code 

size increases, the number of bit flips also increases, it is not 

necessary to  test all possible combinations. This means that 

in some cases it may be more convenient to use an EG-LDPC 

code and keep a word size compatible with existing designs 

than the use of  DS-LDPC code which requires a different 

word size or a shortened version of that code. When  word 

size is used which is a power of two, there would be a bit  is 

not used by the EG-LDPC code. 

 
B] Efficiency of EG-LDPC 

 

The comparison of the rate of the EG-LDPC code with other 

codes is more important to understand if the interesting 

properties of low-density and FSD-ECC come at the expense 

of lower code rates. the code rates of the EG-LDPC codes  

are compared  with an achievable code rate upper bound 

(Gilbert-Varshamov bound) and a lower bound (Hamming 

bound). The EG-LDPC codes are not larger than the 

achievable Gilbert bound for the same and value and they are 

not much larger than the Hamming bound [5]. 

 
C]  INTRODUCTION TO LDPC CODES 
 

Let ᴄ is a LDPC code with length ɳ and dimension of the 

number of information bits ƙ . Let H an (m×n) matrix which 

denotes a parity check matrix of ᴄ.  The Tanner graph of an 

LDPC code, Ҫ is a bipartite graph having two sets of nodes: 

variable (bit) nodes and check (constraint) nodes. The check 

nodes (variable nodes) connected with a variable node (check 

node) are said to be its neighbors. The degree of a node is the 

number of its neighbors. In a (γ,ρ) regular LDPC code, here 

each variable node has degree γ and each check node has 

degree ρ. The girth ᶢ is the length of the shortest cycle in Ҫ . 

A check node is referred as satisfied if the sum of all 

incoming messages has even parity and unsatisfied otherwise. 

The corresponding H matrix is given by  

 
The Gallagher B algorithm on the BSC operates passing 

binary messages along with the edges of the Tanner graph of 

LDPC code. Every iteration of message starts with sending 

messages from variable nodes and ends by sending messages 

from check nodes to variable nodes. For a variable node ᶹ 

(check node ᴄ ), let ᴇ(ᶹ) (ᴇ(ᴄ)) denote the edges incident on 

ᶹ(ᴄ) . 

 
 
Fig. 2. Illustration of message passing. (a) Variable to check message. (b) 

Variable 

 

to check message in case of tie. (c) Check to variable 

message. 

 

 Also, let ᵣ(ᶹ)  be the received value of node ᶹ. Let the degree 

of a variable node denoted by ј . A threshold is denoted by 

bᵢ,ј is determined for every iteration i and variable degree ј. 

Let mᵢ(e) be the messages passed on an edge e from variable 

node to check node and vice versa in iteration i respectively. 

Then for each and every  node ᶹ , the Gallagher B algorithm 

passes the following messages in the iteration.[6] 
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Fig. 2 illustrates the message passing rules for different cases. 

 

 

D] Majority Logic Decoder/Detector 

 
 Results of these prove the hypothesis for the codes with small 
word size (N=15 and N=63). For N=255 up to three errors 
have been completely checked while for N=1023 only single 
and double error combinations have been completely checked. 
For complementing the results of the complete tests for large 
codes and number of errors, random error patterns have been 
used by using simulations. One billion error combinations are 
tested.  For the number of errors, a similar reasoning applies, 
the large number of errors occur, the greater the probability, 
odd number of errors occurs in at least one equation. Finally it 
shows  that the possibility of undetected errors are differ for 
an even and an odd number of errors as in the latter case, one 
of the errors  occur in a bit that is not tested  by any equation. 
The simulation results suggest that all errors corrupting  three 
and four bits would be  number of errors. The explanations of 
decreased word size as follows, the larger the word size, the 
large number of the number of MLD check equations in Table 
I and therefore it is more unlikely the errors occur in the same 
equation. For the number of errors, a similar reasoning applies 
the more number of errors, the larger the possibility that an 
odd number of errors occurs in at least one equation. Finally it 
must be show that the possibilities of undetected errors are 
differ for an even and an odd number of errors as in the latter 
case, any one of the errors must occur in a bit which is not 
tested by any equation. The simulation result shows that all 
errors corrupting three and four bits would be observed in the 
first three iterations. For errors affecting a large bits, there is 
less possibility of not detected in those iterations. For greater 
word sizes, the probabilities are sufficiently less which is 
acceptable in many applications [3]. 

                                         In summary, the first three iterations 
will find all errors corrupting four or fewer bits, and almost 
other detectable error affecting greater bits. This is a slightly 
bad performance than in the case of DS-LDPC codes where 
errors affecting five bits were always found. The majority 
logic circuitry is very simple for EG-LDPC codes, as the 
number of equations is a power of two and an approach based 

on sorting networks proposed which can be used for reducing 
the cost of the majority logic decoding. EG-LDPC codes have 
block lengths closer to a power of two, thus matched well to 
the requirements of modern memory systems. This may 
means that in many cases it may be more convenient the use 
of EG-LDPC code and maintain a word size adjustable with 
existing designs i.e. power of two than the  use of  DS-LDPC 
code having a different word size or a short version of that 
code. By using word size with  a power of two, there would be 
a bit which is not utilized by the EG-LDPC code. This bit can 
be utilized for a parity covering all bits in the word that would 
find all errors corrupting an odd number bit. In that case, the 
design using the EG-LDPC would also find all errors 
corrupting five or fewer bits.[3] 

 

E] Need For Error Detection 

 

 Physical defects and environmental interference in the 

communication medium cause random bit errors during 

transmission of data. Error coding is one of the methods of 

detecting and correcting these errors for ensuring information 

is transferred from its source to its destination. In computer 

memory, error coding is used for fault tolerant computing, 

magnetic and optical data storage media, satellite and deep 

space communications, network communications, cellular 

telephone networks, and almost any other form of digital data 

communication. It also uses mathematical formulas to encode 

data bits at the source into larger bit words for 

transmission[3]. 

                                        The “code word" can be decoded at 

the destination for retrieving the information. In the code 

word the extra bits give redundancy, according to the coding 

scheme used the destination uses the decoding process to 

determine if the communication medium introduced errors 

and in some cases correct them so that the data need not be 

transmitted again. Depending on the types of errors, different 

error coding schemes is chosen and whether or not again data 

transmission is possible. Good communications technology 

and faster processors makes more complex coding schemes, 

with greater error detecting and correcting capabilities, 

possible for small embedded systems, which allow for more 

robust communications. The tradeoffs in between coding and 

bandwidth overhead, coding complexity and allowable 

coding delay between transmissions, must be considered for 

each application.[3]  

III.,PARITY CHECK CODE 

 For simplicity, we are discussing the even-parity checking, 

where the number of 1’s should be an even number. It’s also 

possible of using an odd-parity checking, where the number 

of 1’s should be odd. 
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One Dimensional Parity Check 

 

The most common and less costly mechanism is the simple 

parity check for error- detection. A redundant bit is said to be 

parity bit in this technique is attached to every data unit so the 

number of 1’s in the unit with the even parity. Blocks of data 

are subjected to a check bit or Parity bit in the form of 

generation from the source, where a parity of 1 is added to 

the block when it contains an odd number of 1’s (ON bits) 

and 0 is added when it contains an even number of 1’s. At the 

receiving end the parity bit is computed from the received 

data bits and these bits is compared with the received parity 

bit. This scheme makes the total number of 1’s even, that’s 

why it’s called even parity checking. 

Two Dimensional Parity Check 

 

By using two-dimensional parity check, performance can be 

improved, which organizes the block of bits in the form of a 

table. There are calculated for each row, which is equal to a 

simple parity check bit. These bits are also calculated for all 

columns then both are sent along with the data. At the 

receiving end these are compared with the parity bits 

 

RESULT 

 

This method is applied to the class of one step MLD EG-

LDPC codes.  The conclusions are introduced first in terms of 

a hypothesis to present the results, and then it is validated by 

simulation and also a theoretical analysis is done. The results 

obtained can be summarized in the following assumption. 

 “Given a word read from a memory protected with one step 

MLD EG-LDPC codes, and corrupted up to four bit-flips, all 

errors can be obtained in only three decoding cycles”. 

 This assumption is differ from the DS-LDPCs codes in that 

case errors corrupted five bits always detected. This is cause 

due to structural differences between EG-LDPC and DS-

LDPC codes, which will be detailed. By assuming the above 

assumption, the EG-LDPC codes is implemented and tested. 

For codes with small words and corrupted by a small number 

of bit flips, it is used to generate and test all error 

combinations. As the code size, the number of bit flips also 

increases. Therefore the simulations are done in two ways, by 

checking all error combinations if it is feasible and by 

checking randomly generated combinations in the rest of the  

cases. The results for the exhaustive checks.  For N=255 up 

to three errors have been completely checked while for 

N=1023 only single and double error combinations have been 

checked. To complement the results of the exhaustive checks 

for greater codes and number of errors, simulations is done 

using random error patterns. One billion error combinations 

are checked. The results for errors corrupting more than four 

bits are shown in Table, since for errors up to corrupting four 

bits no undetected errors.  It can be noted that for errors affect 

more than four bits, there are less number of error 

combinations that will not observed in the first three 

iterations. This number is reduced with word size and also 

with number of errors. The reduced word size can be 

explained as follows, the greater the word size, the greater the 

number of MLD check equations and therefore it is occur in  

 

the same equation. Finally it must be noted that the 

possibilities of undetected errors are differ for an even and an 

odd number of errors as in the last case, one of the errors 

must occur in a bit which is not tested by any other equation.  

           The simulation results noted that all errors corrupting 

three and four bits would be obtained in the first three 

iterations. For errors corrupting a large number of bits, there 

is a small possibility of not found in those iterations. The 

possibilities are sufficiently small to be acceptable in many of 

the applications for large word sizes. The first three iterations 

will detect all errors corrupting four or fewer bits, and almost 

every other findable error corrupting more bits. The majority 

logic circuitry is simple for EG-LDPC codes. In addition, 

EG-LDPC codes have block lengths nearer to a power of two, 

thus matching well to the requirements of modern memory 

systems. This is means that, in some cases it may be more 

convenient to use an EG-LDPC code than using a DS-LDPC 

code having a different word size or a short version of that 

code and keep a word size compatible with existing designs 

i.e. power of two. By using word size which is a power of 

two, then a bit is not used by the EG-LDPC code. The design 

using the EG-LDPC code would also detect all errors 

corrupting five or fewer bits. 

 

Table: Undetected errors with one billion random errors 

combinations 

 

CONCLUSION 

 

In this brief, the error detection during the first iterations of 

serial one step Majority Logic Decoding of EG-LDPC codes 

has been studied. The main objective was to reduce the 

decoding time by stopping the decoding process when there 

are no errors detected. The simulation results show that all 

tested combinations of errors affecting up to four bits are 

detected in the first three iterations of decoding. These results 

extend the ones recently presented for DS-LDPC codes, 

making the modified one step majority logic decoding more 

attractive for memory applications. The designer now has a 

larger choice of error correction and capabilities word 

lengths. Future work includes extending the theoretical 

analysis to the cases of three and four errors. More generally, 

determining the required number of iterations to detect errors 

affecting a given number of bits seems to be an interesting 

problem. A general solution to that problem would enable a 

fine-grained tradeoff between error detecting capability and 

decoding time. 

 

 

 

 

 

N 5 

errors 

6 

errors 

7 

errors 

8 

errors 

9 

errors 

10 

errors 

11 

errors 

12 

errors 

63 5672 5422 1079 1174 823 817 537 549 

255 23 10 0 0 0 0 0 0 

1023 0 1 0 0 0 0 0 0 
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