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Abstract  

 

Mining frequent items is one of the most important 

research topics in data mining. The function is to mine 

the transactional data which describes the item 

purchased by the customer. Traditional frequent 

itemset mining approaches have mainly considered the 

problem of mining static transaction databases. In 

these methods, transactions are in secondary storage 

so that multiple scans over the data can be performed. 

This paper proposes a data mining method for finding 

recent frequent items over an online data stream. A 

data stream is a continuous, huge, fast changing, rapid, 

infinite sequence of data elements. It is assumed that 

the stream can only be scanned once and hence if an 

item is passed, it cannot be revisited, unless it is stored 

in main memory. In this method, it uses multiple 

segments for handling different size of windows over 

data streams. Storing these segments in a data 

structure, the usage of memory can be optimized. It 

also an effective bit- sequence representation of items 

is uses to reduce the time and memory needed to slide 

the windows.  

Keywords— Data mining; Data stream; Sliding 

window model; Association rule; Frequent itemset 

 

 

1. Introduction  
Frequent itemset mining is a KDD technique which 

is the basic of many other techniques, such as 

association rule mining, sequence pattern mining, 

classification, and clustering. A data stream is a 

massive unbounded sequence of data elements 

continuously generated at a rapid rate. It is impossible 

to maintain all the elements of data streams [1]. This 

rapid generation of continuous streams of information 

has challenged our storage, computation and 

communication capabilities in computing systems.  

 

 

 

 

 

Data Stream mining refers to informational structure 

extraction as models and patterns from continuous data 

streams [5]. Data Streams have different challenges in 

many aspects, such as computational, storage, querying 

and mining. 

Data stream mining differs from traditional data 

mining since its input of mining is data streams, while 

the latter focuses on mining (static) databases. 

Compared to traditional databases, mining in data 

streams has more constraints and requirements. First, 

each element (e.g., transaction) in the data stream can 

be examined only once or twice, making traditional 

multiple-scan approaches infeasible. Second, the 

consumption of memory space should be confined in a 

range, despite that data elements are continuously 

streaming into the local site. The mining task should 

proceed normally and offer acceptable quality of 

results. Fourth, the latest analysis result of the data 

stream should be available as soon as possible when the 

user invokes a query [2] [6].  

 

 This result, one good stream mining algorithm to 

possess efficient performance and high throughput. 

Slight approximate errors occurred in the mining result 

is usually acceptable by the user. 

 

 

2. Existing System  
Traditional frequent itemset mining approaches have 

mainly considered the problem of mining static 

transaction databases. In these methods, transactions 

are stored in secondary storage so that multiple scans 

over the data can be performed. It accepts only one 

minimum support and using fixed window length. The 

traditional method old data required many times. So, it 

needs huge memory to stored data. The traditional data 

mining methodology may not be valid in a data stream. 

Because it uses huge memory to store data, high 

processing power, several iterations of the data, uses a 

uniform minimum support threshold. 
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3. Related Work  
     The frequency of a pattern is the number of 

transactions containing the pattern in the transaction 

database. The problem of frequent pattern mining is to 

find the complete set of patterns satisfying a minimum 

support in the transaction database. The downward 

closure property is used to prune the infrequent 

patterns. This property tells that if a pattern is 

infrequent then all of its super patterns must be 

infrequent. The Apriori algorithm is the initial solution 

of frequent pattern mining problem. But it suffers from 

the level-wise candidate generation-and-test problem 

and needs several database scans [3]. The FP-growth 

algorithm solved this problem by using FP-tree based 

solution without any candidate generation and using 

only two database scans[8]. Other research has been 

done to efficiently mine frequent patterns. However, 

this traditional frequent pattern mining considers equal 

profit/weight for all items. 

 
3.1 Sliding Window  
      Mining recent frequent patterns using the sliding 

window technique has also been studied in the 

literature. Data stream for frequent patterns using a 

time-sensitive sliding window. The window size is 

defined by a fixed period of time. In this approach, the 

incoming stream within a window time period is 

divided into several batches, and frequent patterns are 

mined in each batch individually. Using a discounting 

mechanism, the method discards the old patterns 

.Chang and Lee proposed estWin that finds recent 

frequent patterns adaptively over an online 

transactional data stream using the sliding window 

model[5][7]. This algorithm requires the minimum 

support threshold and another parameter termed the 

significant support to adaptively maintain the 

approximate frequent patterns window after window.  

 

 
3.2 Bit-Sequence Method 
      The authors proposed an Apriori-based algorithm, 

called MFI-TransSW, which finds complete set of 

recent frequent patterns by using bit-sequences to keep 

track of the occurrence of all items in the transactions 

of the current fixed-sized sliding window. To remove 

old data and to reflect the inclusion of new data it 

performs a bit-wise left-shift operation for all bit-

sequences. This approach is based on transaction-

sensitive sliding window where the bit-sequence update 

operation is performed at the arrival of every single 

transaction [6]. The MFI-TransSW applies the level-

wise candidate-generation-and test methodology to find 

the complete set of recent frequent patterns from the 

current window. Therefore, it suffers from the Apriori 

limitation of huge candidate pattern generation, 

especially when mining stream data that contain large 

number of and/or long frequent patterns, and/or with 

lower support count. Furthermore, the transaction-by-

transaction update mechanism may limit its 

performance when stream flows at high speed. Again, 

since the approach maintains the bit-sequence 

information in full for all items in the window, it fails 

to achieve memory efficiency when the window 

contains large number of transactions and distinct 

items, which is very common in data stream 

environment[6]. Even though MFITransSW discovers 

recent frequent patterns from a data stream, it differs 

significantly from the proposed technique in both 

mining approach and data processing strategy. 

 

 

3.3 Association Rule  
      An association is a rule of the format: LHS _ RHS, 

where LHS and RHS stand for Left Hand Side and 

Right Hand Side respectively. These are two sets of 

items and do not share common items. A set of items is 

called an itemset. The goal of association rule 

discovery is to find associations among items from a 

set of transactions, each of which contains a set of 

items. Generally the algorithm finds a subset of 

association rules that satisfy certain constraints [3]. The 

most commonly used constraint is minimum support. 

The support of a rule is defined as the support of the 

itemset consisting of both the LHS and the RHS. The 

support of an itemset is the percentage of transactions 

in the transaction set that contains the itemset. An 

itemset with a support higher than a given minimum 

support is called frequent itemset[4]. Similarly, a rule is 

frequent if its support is higher than the minimum 

support. Minimum confidence, which is the minimum 

ratio of the support of the rule and the support of the 

LHS, is another commonly used constraint for 

association rules. 

 

 

4. Problem Statement 
     Let ψ = {i1, i2. . . im} be a set of items. A 

transaction T = (TID,x1,x2, . . . ,xn), xi є ψ , for 1 ≤i ≤ 

n, is a set of items, while n is called the size of the 

transaction, and TID is the unique identifier of the 

transaction. An itemset is a non-empty set of items. An 

itemset with size k is called a k-itemset. A transaction 

data stream TDS = T1, T2, ..., TN is a continuous 

sequence of transactions, where N is the TID of latest 

incoming transaction TN. A Transaction-sensitive 

window (TransSW) in the transaction data stream is a 
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window that slides forward for every transaction. The 

window at each slide has a fixed number, w, of 

transactions, and w is called the size of the window. 

Hence, the current transaction-sensitive window is 

TransSWNW+1 = [TN_w+1,TN_w+2, . . . ,TN], where 

N _ w + 1 is the window id of current TransSW. The 

support of an itemset X over TransSW, denoted as 

sup(X), is the number of transactions in TransSW 

containing X as a subset. 

 

 

5. Proposed System 
    We propose a new method, which used multiple 

segments for handling different size of windows over 

data streams. Storing these segments in a data structure, 

the usage of memory can be optimized. It also an 

effective bit- sequence representation of items is used 

to reduce the time and memory needed to slide the 

windows.  

    Each transaction in the data stream can be examined 

only once, making traditional multiple-scan approaches 

infeasible. The consumption of memory space should 

be confined in a range. The data characteristic of 

incoming stream may be unpredictable, the mining task 

should proceed normally and offer acceptable quality of 

results. The latest analysis result of the data stream 

should be available as soon as possible when the user 

invokes a query.  

 

 Transaction 

Data Stream 

FIs in 

TransSW1 

FIs in 

TransSW2 

<T1, (acd) > 

 

<T2, (bce) > 

<T3, (abce) > 

<T4, (be) > 

(a), (b), (c), (e), 

(ac), 

(bc), (be), (ce), 

(bce) 

 

(b), (c), (bc), 

(be), (ce), 

(bce) 

 

 

Table 1. Data stream and the frequent itemsets over 

two consecutive transSWs. 

 

5.1  Mining of Frequent Itemsets  
        We describe our proposed single-pass mining 

algorithm, called MFI-TransSW and its bit-sequence 

representation of items. Compared with other sliding 

window based mining techniques, we save memory and 

improve speed by dynamically maintaining all 

transactions in the current sliding window by using an 

effective bit-sequence representation of items. 

 

 

5.2 Bit-Sequence Representation of an Item 
      In MFI-TransSW algorithm, for each item X in the 

current transaction-sensitive sliding window TransSW, 

a bitsequence with w bits, denoted as Bit(X), is 

constructed. If an item X is in the ith transaction of 

current TransSW, the ith bit of Bit(X) is set to be 1; 

otherwise, it is set to be 0. For example, in Table 1, the 

first sliding window Trans- SW1 consists of three 

transactions: (T1, (acd)), (T2, (bce)), and (T3, (abce)), 

but the TransSW2 consists of transactions: (T2, (bce)), 

(T3, (abce)), and (T4, (be)). Because itema appears in 

the 1st and 3rd transactions of TransSW1, the bit-

sequence of a, Bit(a), is 101. Similarly, Bit(b) = 011, 

Bit(c) = 111, Bit(d) = 100, and Bit(e) = 011. 

 

 
5.3.  Window Initialization Phase 
        The window initialization phase is activated while 

the number of transactions generated so far in a 

transaction data stream is less than or equal to a user-

predefined sliding window size w. In this phase, each 

item of the new incoming transaction is transformed 

into its bit-sequence representation. For example, in 

Table 1, the first sliding window Trans- SW1 contains 

three transactions: T1, T2, and T3. The bit sequences of 

items of TransSW1 in the window initialization phase 

are shown in Table 2. 

 

5.4.  Window Sliding Phase  
The window sliding phase is activated after 

the current sliding window TransSW becomes full. A 

new incoming transaction is appended to the current 

sliding window, and the oldest transaction is removed 

from the window. For removing oldest information, an 

efficient method is used in the proposed algorithm. 

Based on the bit-sequence representation, MFI-

TransSW algorithm uses the bitwise left shift operation 

to remove the aged transaction from the set of items in 

the current sliding window. After sliding the window, 

an effective pruning method, called Item- Prune, is 

used to improve the memory usage. For example, in 

Table 1, before the fourth transaction T4 (be) is 

processed, the first transaction T1 must be removed 

from the current window using bitwise left shift on the 

set of items. Hence, Bit(a) is modified from 101 to 010. 

Similarly, Bit(c) = 110, Bit(d) = 000, Bit(b) = 110, and 

Bit(e) = 110.Then, the new transaction T4, (be) is 

processed by bit-sequence transform. The result is 
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shown in Table 3. Note that item d is dropped since 

Bit(d) = 000, i.e., sup(d)TransSW = 0. 

Tid Items 
Bit Sequences in current 

TransSW1 

T1 (acd) 
Bit(a)=100, Bit(c)=100, 

Bit(d)=100 

T2 (bce) 
Bit(a)=100,Bit(c)=110,Bit(d)=100

, Bit(b)=010, Bit(e)=010 

T3 (abce) 
Bit(a)=101,Bit(c)=111,Bit(d)=100

, Bit(b)=011, Bit(e)=011 

 

Table 2. Sliding transaction window1 to transaction 

window2 

 
5.5 The Frequent Itemsets Generation Phase   
      The frequent itemsets generation phase is 

performed only when the up-to-date set of frequent 

itemsets is requested.. The MFITransSW algorithm is 

shown in Table 3. 

 

     First, MFI-TransSW algorithm generates three 

candidate 2-itemsets, (bc), (be) and (ce), by combining 

frequent 1-itemsets: (b), (c) and (e), where Bit(b) = 

111, i.e.,sup(b) = 3, Bit(c) = 110, i.e., sup(c) = 2, and 

Bit(e) = 110, i.e., sup(e) = 2. 1-itemset (a) is an 

infrequent itemset, since its Bit(a) = 010, i.e., sup(a) = 

1. All these candidates are frequent itemsets after using 

bitwise AND operations to count the supports of these 

candidates. Because the Bit(bc) is 110, the support of 

candidate 2-itemset bc are 2, i.e., sup(bc) = 2. 

Similarity, sup(be) = 3, and sup(ce) = 2. Second, MFI-

TransSW generates one candidate 3-itemset (bce) 

according to Apriori property and uses bitwise AND 

operation to count the sup(bce) = 2, i.e., Bit(bc) AND 

Bit(be) AND Bit(ce) = 110. Because no new candidates 

are generated, the generation-then-test process is 

stopped. Hence, there are six frequent itemsets, (b), (c), 

(bc), (be),  

CI2 in SW2 

{(bc) | Bit(b) = 111 AND Bit(c) = 110} 

{(be) | Bit(b) = 111 AND Bit(e) = 111} 

{(ce) | Bit(c) = 110 AND Bit(e) = 111} 

 

 
 

 

 

 

Table 3. Frequent itemset generation 

 

 

6. Experimental Result 

    6.1 Window Initialization 

 

 

 

 

 

 

 

   The window initialization phase is activated while the 

number of transactions generated so far in a transaction 

data stream is less than or equal to a user-predefined 

sliding window size w. 

 

 

FI1 in TransSW2 

(s = 0.6) 

Support count 

 

 

{(bce) | Bit(bce) = 110} 

 

2 

FI1 in TransSW2 

(s = 0.6) 

Support count 

 

 

{(b) | Bit(b) = 111} 

{(c) | Bit(c) = 110} 

{(e) | Bit(e) = 111} 

 

3 

2 

3 
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6.2 Bit- Sequence Method 

      In this phase, each item of the new incoming 

transaction is transformed into its bit-sequence 

representation. 

 

 

 

 

 

 

 

 

 

6.3 Window Sliding 

 

 

 

 

 

 

The window sliding phase is activated after the current 

sliding window TransSW becomes full. A new 

incoming transaction is appended to the current sliding 

window, and the oldest transaction is removed from the 

window. 

 

 

6.4 Frequent Pattern Generation 

 

 

 

 

 

 

 

To find frequent itemsets on a data stream, we maintain 

a data structure that models the current frequent 

itemsets. We update the data structure incrementally. 

 

 

6.5 Apriori Implementation 

 

 
 

In this phase user defined the support count and 

window size. (e.g window size is 10, support count is 

0.1). 

6.5 Status of an Apriori  

 

 

The Apriori Algorithms an influential algorithm for 

mining frequent item sets for boolean association rules.  

In computer science and data mining, Apriori is a 

classic algorithm for learning association rules.  

Apriori is designed to operate on databases containing 

transactions (for example, collections of items bought 

by customers, or details of a website frequentation). 

The algorithm attempts to find subsets which are 

common to at least a minimum number C (the cutoff, 

or confidence threshold) of the item sets.  
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6.6 FP Implementation 
     This phase generates the frequent patterns based on 

FP growth Algorithm. And also it generates the FP 

Tree to find out the frequent patterns.  

 

 
 

The FP-growth algorithm is currently one of the fastest 

approaches to frequent item set mining. It is based on a 

prefix tree representation of the given database of 

transactions (called an FP-tree), which can save 

considerable amounts of memory for storing the 

transactions.FP-Growth is an algorithm for generating 

frequent item sets for association rules. This algorithm 

compresses a large database into a compact, frequent 

pattern– tree (FP tree) structure. FP – tree structure 

stores all necessary information about frequent itemsets 

in a database. 

 

 

7. Conclusion 

     We proposed a data mining method for finding 

recent frequent items over an online data stream. An 

efficient single-pass method, called frequent itemset 

transaction sliding window, for mining the set of 

frequent itemsets over data streams with a transaction 

sensitive sliding window. Frequent itemset transaction 

sliding window not only attain highly accurate mining 

results, but also run significant faster and consume less 

memory than do existing algorithms for mining 

frequent itemsets from data streams within a sliding 

window, and also by comparing two algorithms, 

Apriori and FP growth for discovering all significant 

association rules between items in a large database of 

online transaction. Apriori based algorithm performs 

well for dense datasets and FP- Tree based algorithms 

performs well for sparse datasets. The Apriori 

algorithm scans the dataset repeatedly whereas the FP 

growth avoids the costly candidate set procedure and 

generates the highly condensed database called as FP 

tree.  
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