

Efficient Mechanism to Discover Frequent Pattern over Online Data Streams

Mr. Velusamy. A1, Ms. Shobana. G2, Ms. Saranya. V3
1Assistant Professor, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu, India.
2Assistant Professor, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu, India.
3Assistant Professor, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu, India.

Abstract

Mining frequent items is one of the most important

research topics in data mining. The function is to mine

the transactional data which describes the item

purchased by the customer. Traditional frequent

itemset mining approaches have mainly considered the

problem of mining static transaction databases. In

these methods, transactions are in secondary storage

so that multiple scans over the data can be performed.

This paper proposes a data mining method for finding

recent frequent items over an online data stream. A

data stream is a continuous, huge, fast changing, rapid,

infinite sequence of data elements. It is assumed that

the stream can only be scanned once and hence if an

item is passed, it cannot be revisited, unless it is stored

in main memory. In this method, it uses multiple

segments for handling different size of windows over

data streams. Storing these segments in a data

structure, the usage of memory can be optimized. It

also an effective bit- sequence representation of items

is uses to reduce the time and memory needed to slide

the windows.

Keywords— Data mining; Data stream; Sliding

window model; Association rule; Frequent itemset

1. Introduction
Frequent itemset mining is a KDD technique which

is the basic of many other techniques, such as

association rule mining, sequence pattern mining,

classification, and clustering. A data stream is a

massive unbounded sequence of data elements

continuously generated at a rapid rate. It is impossible

to maintain all the elements of data streams [1]. This

rapid generation of continuous streams of information

has challenged our storage, computation and

communication capabilities in computing systems.

Data Stream mining refers to informational structure

extraction as models and patterns from continuous data

streams [5]. Data Streams have different challenges in

many aspects, such as computational, storage, querying

and mining.

Data stream mining differs from traditional data

mining since its input of mining is data streams, while

the latter focuses on mining (static) databases.

Compared to traditional databases, mining in data

streams has more constraints and requirements. First,

each element (e.g., transaction) in the data stream can

be examined only once or twice, making traditional

multiple-scan approaches infeasible. Second, the

consumption of memory space should be confined in a

range, despite that data elements are continuously

streaming into the local site. The mining task should

proceed normally and offer acceptable quality of

results. Fourth, the latest analysis result of the data

stream should be available as soon as possible when the

user invokes a query [2] [6].

 This result, one good stream mining algorithm to

possess efficient performance and high throughput.

Slight approximate errors occurred in the mining result

is usually acceptable by the user.

2. Existing System
Traditional frequent itemset mining approaches have

mainly considered the problem of mining static

transaction databases. In these methods, transactions

are stored in secondary storage so that multiple scans

over the data can be performed. It accepts only one

minimum support and using fixed window length. The

traditional method old data required many times. So, it

needs huge memory to stored data. The traditional data

mining methodology may not be valid in a data stream.

Because it uses huge memory to store data, high

processing power, several iterations of the data, uses a

uniform minimum support threshold.

2306

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120973

3. Related Work
 The frequency of a pattern is the number of

transactions containing the pattern in the transaction

database. The problem of frequent pattern mining is to

find the complete set of patterns satisfying a minimum

support in the transaction database. The downward

closure property is used to prune the infrequent

patterns. This property tells that if a pattern is

infrequent then all of its super patterns must be

infrequent. The Apriori algorithm is the initial solution

of frequent pattern mining problem. But it suffers from

the level-wise candidate generation-and-test problem

and needs several database scans [3]. The FP-growth

algorithm solved this problem by using FP-tree based

solution without any candidate generation and using

only two database scans[8]. Other research has been

done to efficiently mine frequent patterns. However,

this traditional frequent pattern mining considers equal

profit/weight for all items.

3.1 Sliding Window
 Mining recent frequent patterns using the sliding

window technique has also been studied in the

literature. Data stream for frequent patterns using a

time-sensitive sliding window. The window size is

defined by a fixed period of time. In this approach, the

incoming stream within a window time period is

divided into several batches, and frequent patterns are

mined in each batch individually. Using a discounting

mechanism, the method discards the old patterns

.Chang and Lee proposed estWin that finds recent

frequent patterns adaptively over an online

transactional data stream using the sliding window

model[5][7]. This algorithm requires the minimum

support threshold and another parameter termed the

significant support to adaptively maintain the

approximate frequent patterns window after window.

3.2 Bit-Sequence Method
 The authors proposed an Apriori-based algorithm,

called MFI-TransSW, which finds complete set of

recent frequent patterns by using bit-sequences to keep

track of the occurrence of all items in the transactions

of the current fixed-sized sliding window. To remove

old data and to reflect the inclusion of new data it

performs a bit-wise left-shift operation for all bit-

sequences. This approach is based on transaction-

sensitive sliding window where the bit-sequence update

operation is performed at the arrival of every single

transaction [6]. The MFI-TransSW applies the level-

wise candidate-generation-and test methodology to find

the complete set of recent frequent patterns from the

current window. Therefore, it suffers from the Apriori

limitation of huge candidate pattern generation,

especially when mining stream data that contain large

number of and/or long frequent patterns, and/or with

lower support count. Furthermore, the transaction-by-

transaction update mechanism may limit its

performance when stream flows at high speed. Again,

since the approach maintains the bit-sequence

information in full for all items in the window, it fails

to achieve memory efficiency when the window

contains large number of transactions and distinct

items, which is very common in data stream

environment[6]. Even though MFITransSW discovers

recent frequent patterns from a data stream, it differs

significantly from the proposed technique in both

mining approach and data processing strategy.

3.3 Association Rule
 An association is a rule of the format: LHS _ RHS,

where LHS and RHS stand for Left Hand Side and

Right Hand Side respectively. These are two sets of

items and do not share common items. A set of items is

called an itemset. The goal of association rule

discovery is to find associations among items from a

set of transactions, each of which contains a set of

items. Generally the algorithm finds a subset of

association rules that satisfy certain constraints [3]. The

most commonly used constraint is minimum support.

The support of a rule is defined as the support of the

itemset consisting of both the LHS and the RHS. The

support of an itemset is the percentage of transactions

in the transaction set that contains the itemset. An

itemset with a support higher than a given minimum

support is called frequent itemset[4]. Similarly, a rule is

frequent if its support is higher than the minimum

support. Minimum confidence, which is the minimum

ratio of the support of the rule and the support of the

LHS, is another commonly used constraint for

association rules.

4. Problem Statement
 Let ψ = {i1, i2. . . im} be a set of items. A

transaction T = (TID,x1,x2, . . . ,xn), xi є ψ , for 1 ≤i ≤

n, is a set of items, while n is called the size of the

transaction, and TID is the unique identifier of the

transaction. An itemset is a non-empty set of items. An

itemset with size k is called a k-itemset. A transaction

data stream TDS = T1, T2, ..., TN is a continuous

sequence of transactions, where N is the TID of latest

incoming transaction TN. A Transaction-sensitive

window (TransSW) in the transaction data stream is a

2307

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120973

window that slides forward for every transaction. The

window at each slide has a fixed number, w, of

transactions, and w is called the size of the window.

Hence, the current transaction-sensitive window is

TransSWNW+1 = [TN_w+1,TN_w+2, . . . ,TN], where

N _ w + 1 is the window id of current TransSW. The

support of an itemset X over TransSW, denoted as

sup(X), is the number of transactions in TransSW

containing X as a subset.

5. Proposed System
 We propose a new method, which used multiple

segments for handling different size of windows over

data streams. Storing these segments in a data structure,

the usage of memory can be optimized. It also an

effective bit- sequence representation of items is used

to reduce the time and memory needed to slide the

windows.

 Each transaction in the data stream can be examined

only once, making traditional multiple-scan approaches

infeasible. The consumption of memory space should

be confined in a range. The data characteristic of

incoming stream may be unpredictable, the mining task

should proceed normally and offer acceptable quality of

results. The latest analysis result of the data stream

should be available as soon as possible when the user

invokes a query.

 Transaction

Data Stream

FIs in

TransSW1

FIs in

TransSW2

<T1, (acd) >

<T2, (bce) >

<T3, (abce) >

<T4, (be) >

(a), (b), (c), (e),

(ac),

(bc), (be), (ce),

(bce)

(b), (c), (bc),

(be), (ce),

(bce)

Table 1. Data stream and the frequent itemsets over

two consecutive transSWs.

5.1 Mining of Frequent Itemsets
 We describe our proposed single-pass mining

algorithm, called MFI-TransSW and its bit-sequence

representation of items. Compared with other sliding

window based mining techniques, we save memory and

improve speed by dynamically maintaining all

transactions in the current sliding window by using an

effective bit-sequence representation of items.

5.2 Bit-Sequence Representation of an Item
 In MFI-TransSW algorithm, for each item X in the

current transaction-sensitive sliding window TransSW,

a bitsequence with w bits, denoted as Bit(X), is

constructed. If an item X is in the ith transaction of

current TransSW, the ith bit of Bit(X) is set to be 1;

otherwise, it is set to be 0. For example, in Table 1, the

first sliding window Trans- SW1 consists of three

transactions: (T1, (acd)), (T2, (bce)), and (T3, (abce)),

but the TransSW2 consists of transactions: (T2, (bce)),

(T3, (abce)), and (T4, (be)). Because itema appears in

the 1st and 3rd transactions of TransSW1, the bit-

sequence of a, Bit(a), is 101. Similarly, Bit(b) = 011,

Bit(c) = 111, Bit(d) = 100, and Bit(e) = 011.

5.3. Window Initialization Phase
 The window initialization phase is activated while

the number of transactions generated so far in a

transaction data stream is less than or equal to a user-

predefined sliding window size w. In this phase, each

item of the new incoming transaction is transformed

into its bit-sequence representation. For example, in

Table 1, the first sliding window Trans- SW1 contains

three transactions: T1, T2, and T3. The bit sequences of

items of TransSW1 in the window initialization phase

are shown in Table 2.

5.4. Window Sliding Phase
The window sliding phase is activated after

the current sliding window TransSW becomes full. A

new incoming transaction is appended to the current

sliding window, and the oldest transaction is removed

from the window. For removing oldest information, an

efficient method is used in the proposed algorithm.

Based on the bit-sequence representation, MFI-

TransSW algorithm uses the bitwise left shift operation

to remove the aged transaction from the set of items in

the current sliding window. After sliding the window,

an effective pruning method, called Item- Prune, is

used to improve the memory usage. For example, in

Table 1, before the fourth transaction T4 (be) is

processed, the first transaction T1 must be removed

from the current window using bitwise left shift on the

set of items. Hence, Bit(a) is modified from 101 to 010.

Similarly, Bit(c) = 110, Bit(d) = 000, Bit(b) = 110, and

Bit(e) = 110.Then, the new transaction T4, (be) is

processed by bit-sequence transform. The result is

2308

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120973

shown in Table 3. Note that item d is dropped since

Bit(d) = 000, i.e., sup(d)TransSW = 0.

Tid Items
Bit Sequences in current

TransSW1

T1 (acd)
Bit(a)=100, Bit(c)=100,

Bit(d)=100

T2 (bce)
Bit(a)=100,Bit(c)=110,Bit(d)=100

, Bit(b)=010, Bit(e)=010

T3 (abce)
Bit(a)=101,Bit(c)=111,Bit(d)=100

, Bit(b)=011, Bit(e)=011

Table 2. Sliding transaction window1 to transaction

window2

5.5 The Frequent Itemsets Generation Phase
 The frequent itemsets generation phase is

performed only when the up-to-date set of frequent

itemsets is requested.. The MFITransSW algorithm is

shown in Table 3.

 First, MFI-TransSW algorithm generates three

candidate 2-itemsets, (bc), (be) and (ce), by combining

frequent 1-itemsets: (b), (c) and (e), where Bit(b) =

111, i.e.,sup(b) = 3, Bit(c) = 110, i.e., sup(c) = 2, and

Bit(e) = 110, i.e., sup(e) = 2. 1-itemset (a) is an

infrequent itemset, since its Bit(a) = 010, i.e., sup(a) =

1. All these candidates are frequent itemsets after using

bitwise AND operations to count the supports of these

candidates. Because the Bit(bc) is 110, the support of

candidate 2-itemset bc are 2, i.e., sup(bc) = 2.

Similarity, sup(be) = 3, and sup(ce) = 2. Second, MFI-

TransSW generates one candidate 3-itemset (bce)

according to Apriori property and uses bitwise AND

operation to count the sup(bce) = 2, i.e., Bit(bc) AND

Bit(be) AND Bit(ce) = 110. Because no new candidates

are generated, the generation-then-test process is

stopped. Hence, there are six frequent itemsets, (b), (c),

(bc), (be),

CI2 in SW2

{(bc) | Bit(b) = 111 AND Bit(c) = 110}

{(be) | Bit(b) = 111 AND Bit(e) = 111}

{(ce) | Bit(c) = 110 AND Bit(e) = 111}

Table 3. Frequent itemset generation

6. Experimental Result

 6.1 Window Initialization

 The window initialization phase is activated while the

number of transactions generated so far in a transaction

data stream is less than or equal to a user-predefined

sliding window size w.

FI1 in TransSW2

(s = 0.6)

Support count

{(bce) | Bit(bce) = 110}

2

FI1 in TransSW2

(s = 0.6)

Support count

{(b) | Bit(b) = 111}

{(c) | Bit(c) = 110}

{(e) | Bit(e) = 111}

3

2

3

2309

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120973

6.2 Bit- Sequence Method

 In this phase, each item of the new incoming

transaction is transformed into its bit-sequence

representation.

6.3 Window Sliding

The window sliding phase is activated after the current

sliding window TransSW becomes full. A new

incoming transaction is appended to the current sliding

window, and the oldest transaction is removed from the

window.

6.4 Frequent Pattern Generation

To find frequent itemsets on a data stream, we maintain

a data structure that models the current frequent

itemsets. We update the data structure incrementally.

6.5 Apriori Implementation

In this phase user defined the support count and

window size. (e.g window size is 10, support count is

0.1).

6.5 Status of an Apriori

The Apriori Algorithms an influential algorithm for

mining frequent item sets for boolean association rules.

In computer science and data mining, Apriori is a

classic algorithm for learning association rules.

Apriori is designed to operate on databases containing

transactions (for example, collections of items bought

by customers, or details of a website frequentation).

The algorithm attempts to find subsets which are

common to at least a minimum number C (the cutoff,

or confidence threshold) of the item sets.

2310

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120973

6.6 FP Implementation
 This phase generates the frequent patterns based on

FP growth Algorithm. And also it generates the FP

Tree to find out the frequent patterns.

The FP-growth algorithm is currently one of the fastest

approaches to frequent item set mining. It is based on a

prefix tree representation of the given database of

transactions (called an FP-tree), which can save

considerable amounts of memory for storing the

transactions.FP-Growth is an algorithm for generating

frequent item sets for association rules. This algorithm

compresses a large database into a compact, frequent

pattern– tree (FP tree) structure. FP – tree structure

stores all necessary information about frequent itemsets

in a database.

7. Conclusion

 We proposed a data mining method for finding

recent frequent items over an online data stream. An

efficient single-pass method, called frequent itemset

transaction sliding window, for mining the set of

frequent itemsets over data streams with a transaction

sensitive sliding window. Frequent itemset transaction

sliding window not only attain highly accurate mining

results, but also run significant faster and consume less

memory than do existing algorithms for mining

frequent itemsets from data streams within a sliding

window, and also by comparing two algorithms,

Apriori and FP growth for discovering all significant

association rules between items in a large database of

online transaction. Apriori based algorithm performs

well for dense datasets and FP- Tree based algorithms

performs well for sparse datasets. The Apriori

algorithm scans the dataset repeatedly whereas the FP

growth avoids the costly candidate set procedure and

generates the highly condensed database called as FP

tree.

References

[1] R. AGRAWAL, T. Imielinski, and A. Swami. “Mining

Association Rules between Sets of Items in Large

Databases”. In Proceedings of the 2008 International

Conference on Management of Data, pp. 207-216, 2008.

[2] S. Muthukrishnan , “Data streams: algorithms and

applications”. Proceedings of the fourteenth annual ACM-

SIAM symposium on discrete algorithms, 2009.

[3]. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and

Verkamo, A.I. Fast discovery of association rules. In

U.Fayyad et al. (eds), “Advances in Knowledge Discovery

and Data Mining”, Menlo Park, CA: AAAI Press, 307-328.

[4]. Webb, G.I. “Efficient search for association rules”. In

Proceedings of the Sixth ACM-SIGKDD

InternationalConference on Knowledge Discovery and Data

Mining, New York, NY: ACM, 99-107.

[5] Li, H.-F., Lee, S.-Y., Shan, M.-K. (2005a). “Online

mining (recently) maximal frequent itemsets over data

streams”. In Prooceedings of the IEEE RIDE.

[6] Chang, J., & Lee, “A sliding window method for finding

recently frequent itemsets over online data streams”. Journal

of Information Science and Engineering, 2005.

[7] Lucchese.C, S. Orlando, and R. Perego “Fast and memory

efficient mining of frequent closed itemsets” Knowledge and

Data Engineering, IEEE Transactions; January 2006.

[8] Han, J., Pei, J., & Yin, Y. ”Mining frequent patterns

without candidate generation”. In Proceedings of the 2007

international conference on management of data, (pp. 1–12).

[9] Zhao.H, A. Lall, M. Ogihara, O. Spatscheck, J. Wang, J.

Xu, “A data streaming algorithm for estimating entropies of

od flows”, Proceedings of the 7th ACM SIGCOMM

conference on Internet measurement, 2007.

[10] Zhang.L, Z. Li, M. Yu, Y. Wang, Y. Jiang, ”Random

sampling algorithms for sliding windows over data streams”,

Proc. of the 11th Joint International Computer Conference,

pp. 572–575, 2008.

 [11] Pei.J, J. Han, and R. Mao “Closet: An efficient

algorithm for mining frequent closed itemsets” ACM

SIGMOD International Workshop on Data Mining and

Knowledge Discovery, May 2007.

[12] Tatbul.N, S. Zdonik, “Window-aware load shedding for

aggregation queries over data streams”, Proceedings of the

32nd international conference on Very large data bases,

2006.

[13] Vitter.J.S, “Random sampling with a reservoir”, ACM

Transactions on Mathematical Software (TOMS), v.11 n.1,

pp.37–57, 1985.

[14] Indyk.P, D. Woodruff, “Optimal approximations of the

frequency moments of data streams”, Proceedings of the

thirty-seventh annual ACM symposium on Theory of

computing, pp.202–208, 2005.

2311

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120973

