
Efficient Overflow Detection and Correction in

RNS Addition using Partial Reverse Conversion:

Exploring the Moduli Set {22n-1-1, 2n, 2n -1}

Mohammed I. Daabo

Department of Computer Science, School of Computing and Information Sciences,

C. K. Tedam University of Technology and Applied Sciences, Ghana

ABSTRACT-This research paper presents a comprehensive

algorithm for detecting and correcting overflow in Residue Number

System (RNS) architecture. The underlying principle of the proposed

algorithm relies on the Chinese Reminder Theorem, that enables the

detection of overflow in RNS addition of two operands. Additionally,

the scheme utilizes partial reverse conversion to identify overflow

accurately and deliver error-free results. Subsequently, the algorithm

is implemented using the moduli set {22n-1-1, 2n, 2n -1}. To

demonstrate the effectiveness of this proposed scheme, a comparison

profile is conducted and evaluated on the delay and area

requirements. In all, the scheme showcases superior performance in

terms of both AD2(resources) and delay(speed), surpassing the

capabilities of existing scheme. It is however observed that the new

technique will impose high computational complexity (Area)

Keywords: Residue Number System, reverse conversion, Chinese

Reminder Theorem, Overflow, operands.

I. INTRODUCTION

Residue number system (rns) is an integer number

system that utilizes remainders called residues to

represent numbers. It supports parallelism, carry-free

and borrow-free arithmetic and ensure single step

multiplication without partial products. These unique

characteristics make RNS particularly suitable for

applications in the field of Digital Signal Processing

(DSP), digital filtering, convolutions, correlations,

Discrete Fourier Transforms (DFT), Fast Fourier

Transforms (FFT) and Direct Digital Frequency

Synthesis (DDFS) [5], [6]. However, for a successful

application of RNS, overflow detection and correction

must be easier and faster to perform so as not to limit the

full usage of RNS in general purpose computing. In

Weighted Number System (WNS), overflow can be

efficiently handled by rounding, truncating or saturating

arithmetic. Overflow detection in RNS involves more

complex and time-consuming procedures. RNS is

determined by a set S, of N integers that are pair-wise relatively

prime. That is 𝑆= { , … } where for 𝑖,

𝑗=1... 𝑁 and 𝑖≠𝑗, and gcd means the greatest common divisor [1].

Every integer 𝑋 in [0,−1] can be uniquely represented with N-tuple

where, 𝑋→ (𝑥1, 𝑥2,…,𝑥𝑁) and = (𝑋 mod

𝑚𝑖); for 𝑖=1 𝑡𝑜 𝑁. The set S and the number 𝑥𝑖 are called the moduli

set and residue of X modulo 𝑚𝑖 respectively. In order to calculate the

number X from its residues, we can apply the CRT which relates X

and its RNS representation by:

(1) Where ;

 with and being the multiplicative

inverse of .

Overflow in computing refers to storing data that is larger than its

designated memory location. Overflow is described in RNS as a

condition in which a number falls outside the valid range of a

specific RNS. A valid RNS number [4] is well represented by a

number from the set [0. M-l]. Take, for example, the sum of the

decimal numbers 90 and 25, which equals 115. The outcome of

performing this addition in RNS with the moduli set {3, 5, 7} with

dynamic range of 105 is . However, the number

 is the decimal equivalent of 10. This is because

the sum of 90 and 25, which is 115, is outside the legitimate range,

therefore introducing an overflow in the sum. The traditional

overflow detection technique utilizes either the Chinese Remainder

Theorem (CRT) [4] or the Mixed Radix Conversion (MRC)

techniques.
In recent time, researchers have made considerable efforts to design

efficient overflow detection schemes which are dependent on full

reverse conversion [11]. Some proposed RNS overflow detection

algorithms that are based on operands examination [4] and other

costly and time consuming procedures such as base extension, use of

redundant RNS, group number approach and sign detections as in [8]

and [7] The scheme in [4] is demonstrated to be better than those in

[2] and [8] in terms of both area and delay. This research paper

introduces a proposed scheme for detecting and correcting overflow

in the Residue Number System (RNS) architecture. The proposed

scheme employs partial reverse conversion, utilizing the Chinese

Reminder Theorem (CRT) technique.

II. PROPOSED ALGORITHM
The proposed algorithm using CRT is presented in details in this

section. The presented scheme detects overflow and corrects it.

A. Algorithm for the Proposed Scheme

The algorithm for the proposed method is as follows: [9]

1. Accept X and Y

2. Determine α𝑥 and αy according to [7]

3. Determine E and β according to [10] and [11]

4. Overflow occurs only under one of the following

conditions:

(i) If the MSB of E i.e. E4n = 1

(ii) If E4𝑛−1 down to E0 is “1”

(iii) If E4𝑛−1 down to E1 is “1” and β= 1

5. The correct result is computing Z according to (10)

356

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060154
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

, ,

 (2)

Lemma 1 :For the given moduli set, we have

 (3)

 (4)

 (5)

The proof of (3) – (5) is demonstrated in (10)

Lemma 2:

Using CRT in (1) the binary number can be written as:

Subtracting x2 from both sides of the above expression and dividing

by 2n, the binary number is obtained as:

 (6)

Where

 (7)

From (6), let X and Y be two RNS numbers such that their sum is Z.

From (6) it implies that:

 (8)

 (9)

, (10)

Where and

Let

 (11)

Lemma 3:

Given any two (2) RNS numbers 𝑋= (𝑥1, 𝑥2, 𝑥3) and 𝑌 = (𝑦1, 𝑦2, 𝑦3),

overflow occurs if and only if

 E (12)

Proof

Assume (12) holds true; then for (10)

Z

Which is outside the legitimate range, i.e. [0, M-1], hence overflow

will occur

Furthermore, if (13) holds true then (10) can be rewritten as

 Z = 2n (+ 1) (13)

 Z = 2n (

 Z = M

Which is also outside the legitimate range, therefore overflow will

occur. Hence the proof. From equation (10), Z will be the correct

result of summing 𝑋 and 𝑌 whether overflow occurs or not in the

given moduli set, but will be out of the range in [0, 𝑀−1] if either

(12) or (13) holds; therefore, E should be added to the DR to be [0,

𝑀+E−1] in order to legitimize Z.

III. HARDWARE IMPLEMENTATION
In order to reduce the hardware complexity, we use the following

properties to simplify equation (7).

Property 1: The multiplication of a residue number v by 2P in

modulo (2n − 1) is carried out by P bit circular left shift, where P is a

natural number.

Property 2: The residue of a negative residue number (−v) in

modulo (2n − 1) is the one’s complement of v, where 0 ≤ v < 2n − 1.

Equation (7) can further be simplified as follows:

(14)

 Let (15)

 (16)

 (17)

 (18)

It is necessary to note that means the bit of .

Evaluation of 1

The residue can be represented as follows:

 (19)

The residue can be represented in 4n bits as follows:

We evaluate the two parts of 1 separately using property 1

 =

 =

By adding the two above expressions we have the final value of 1

as 1

=

which is a 4n bits residue number. (20)

Evaluation of 2

The residue can be represented as follows;

 (21)

The residue can be represented in 4n bits as follows;

By applying property 1:

And finally by applying property 2 we get:

 = (22)

Where means the complement of

Evaluation of 3 and 4

The residue can be represented as follows;

 (23)

The residue can be represented in 4 bits as follows:

357

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060154
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

By applying property 1:

 (24)

Again, =

And finally by applying property 2 we get:

 (25)

In order to evaluate the sum Z, we further simplify equation (10)

 (26)

 = (27)

 (28)

Therefore,

 (29)

Implementation of equations (26) - (29) gives the correct result of

Z whether overflow occurs or no

Figure 1: Block diagram of the partial reverse converter

IV. PROPOSED ARCHITECTURE
The output of the partial reverse converter α is determined using

equation (14), where the parameters are defined in equations (15) to

(18). The α values corresponding to numbers X and Y, denoted as

and respectively, are computed using CSAs 1 and 2, along with

regular 4n-bit CPAs 1 and 2. The results from these CPAs are passed

to a multiplexer (MUX 1), which selects either CPA 1 or CPA 2

based on the carry out of CSA 1.

The value corresponds to the decimal number X, and

corresponds to the decimal number Y. They are added using a

regular (4n+1)-bit CPA 3 to obtain E. Simultaneously, x_2 and y_2

are computed using a regular (n+1)-bit CPA 4 to obtain R.

Another multiplexer (MUX 2) is used to set α as zero if the most

significant bit (MSB) of R is 0, or as one (1) if the MSB of R is 1.

This configuration is illustrated in figure 2, representing the overflow

detection unit.

The CSAs 1 and 2 require an area of 4nA𝐹𝐴 each, while CPAs 1 and

2 also require 4nA𝐹𝐴 each. Therefore, the total area required to

obtain α is 16nA𝐹𝐴. Consequently, for two numbers X and Y, the

total area requirement is 32nA𝐹𝐴. CPA 3 requires an area of

(4n+1)A𝐹𝐴, and CPA 4 requires (n+1)A𝐹𝐴. Hence, the area

requirement for the overflow detection component is (5n+2)A𝐹𝐴.

Therefore, the overall area requirement of the overflow detection

scheme is (37n+2)A𝐹𝐴.

In terms of delay, each CSA (CSAs 1 and 2) introduces a delay of

𝐷𝐹𝐴, while each CPA (CPAs 1 and 2) imposes a delay of 4n𝐷𝐹𝐴.

Since they operate in parallel, for two numbers, the total delay

becomes 8n𝐷𝐹𝐴. Thus, the delay for computing α is (8n+2)𝐷𝐹𝐴.

The CPA pair 3 and 4 together impose a delay of (4n+1)D𝐹𝐴 for the

overflow detection unit. Therefore, the required delay for the

proposed scheme is (12n+3)D𝐹𝐴.

The correction unit utilizes a regular (5n+1)-bit CPA 5. It requires an

area of (5n+1)A𝐹𝐴 and has a delay of (5n+1)D𝐹𝐴.

The schematic diagrams for the proposed scheme is provided below.

Figure 2: Overflow Detection

V. NUMERICAL ILLUSTRATIONS
In this section, some numerical examples with the proposed scheme

are presented.

From the moduli set {22n-1-1, 2n, 2n -1}, when n , we have {7, 4,

3}.

Given two (2) numbers and , we then check for

overflow in the sum of and using moduli set {7, 4, 3}.

{22n-1 −1, 2n, 2n - 1}, where 𝑚1 = 22n-1 − 1, 𝑚2 = 2n and 𝑚3 = 2𝑛 -1 we

have =

= , ,

Therefore

RNS to decimal conversion of

 will result in the decimal

358

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060154
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

number 12432. Whilst the sum of the decimal numbers 825 and 500

is 1337. Clearly, this is a sign that overflow has occurred.

To check this RNS overflow, the following proposed algorithm is

used.

Given that:

Since the MSB of E is “1”, the scheme will detect that overflow has

occurred.

From the moduli set {22n-1-1, 2n, 2n -1}, when n =3 , we have {31, 8,

7}

Given two (2) numbers and , we then check

for overflow in the sum of and using moduli set . Thus

Therefore,

RNS to decimal conversion of

will

result in the decimal number 1225844 which is the correct result of

7285 + 16380.

Figure 3: Delay graphs

Figure 4: Area graphs

Figure 5: Graph of AD2

VI. PERFORMANCE EVALUATION
This section presents and analyzes the architectural performance of

the proposed scheme in terms of Area, Delay and AD2.. The results is

compared with the proposal presented in [4]. From Table 1, the

proposed method has less delay and AD2 than [4] but presented a

large architectural size (Area). It can be noted that as n increases, the

proposed scheme becomes faster, necessitating less delay as shown

in Figure 3. It is however observed in Figure 4 that there is a higher

hardware complexity associated with the suggested technique and

this can be attributed to the broader dynamic range of the moduli set

chosen. The AD2 comparison in Figure 5 shows that the suggested

method will consume fewer resources than the scheme proposed in

[4].

VII. CONCLUSION
This study focused on addressing the issue of overflow detection

during addition operation in Residue Number System (RNS). This

phenomenon has been one of the limiting factors that prevents RNS

from being utilize in general-purpose computing. The research paper

proposed a comprehensive algorithm for detecting overflow and

applied it to the moduli set {22n-1-1, 2n, 2n -1}. Notably, these

algorithm does not require a complete residue-to-binary conversion

process. The proposed scheme ensures the accurate computation of

the sum of two numbers, regardless of whether an overflow occurs or

not. Moreover, the chosen moduli set offers a wider dynamic range,

making the scheme more effective and efficient in terms of Delay

and AD2 but fall short in Area compared to the proposal in [4].

359

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060154
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

VIII. REFERENCES

[1] A. S. Molahosseini, K. Navi (2007). New Arithmetic

residue to binary Converters. International Journal of

Computer Sciences and Engineering Systems, Vol. 1,

No.4, pp. 295-299

[2] D. Younes and P. Steffan (2013). Universal approaches for

overflow and sign detection in residue number system

based on {2n −1, 2n, 2n +1}. The Eighth International

Conference on Systems (ICONS 2013), pp. 77 – 84.

[3] E. K. Bankas and K. A. Gbolagade (2013). A New

Efficient FPGA Design of Residue-to-binary Converter.

International Journal of VLSI design & Communication

Systems (VLSICS) Vol.4, No.6.

[4] H. Siewobr and K. A. Gbolagade (2014). RNS Overflow

Detection by Operands Examination. International Journal

of Computer Applications (0975 – 8887), Vol 85, No. 18 .

[5] K. A. Gbolagade (2013) . An Efficient MRC based RNS-

to Binary Converter for the {22n−1, 2n, 22n+1−1} Moduli

Set. International Journal of Advanced Research in

Computer Engineering & Technology (IJARCET) Volume

2, Issue 4.

[6] K.A. Gbolagade, R. Chaves, L. Sousa, and S.D. Cotofana

(2010). An improved reverse converter for the {22n+1 −1,

2n, 2n −1} moduli set. IEEE International Symposium on

Circuits and Systems (ISCAS 2010), pp. 2103-2106.

[7] L. Theodore Houk (1989).Residue Addition Overflow

Detection Processor. Boing Company, Seatle, Wash. Appl.

No.:414276.

[8] M. Rouhifar, M. Hosseinzadeh, S. Bahanfar and M.

Teshnehlab (2011).Fast Overflow Detection in Moduli Set.

International Journal of Computer Science Issues, Vol.

(8/3), pp. 407-414.

[9] P. A. Agbedemnab and E.K. Bankas(2015). A Novel RNS

Overflow Detection and Correction Algorithm for the

Moduli Set{2n-1,2n,2n+1}. International Journal of

Computer Applications (975 – 8887)

[10] P. A. Mohan (2007). Reverse Converters for a New Moduli

Set {22n - 1, 2n, 22n + 1}. Circuit Systems Signal

Processing, 26: 215.

[11] Salifu, A. (2021). New Reverse Conversion for

Four-Moduli Set and Five-Moduli Set. Journal of Computer

and Communications, 9, 57-66.

Table 1. Area, Delay and AD2 Comparison

SCHEME [4] PROPOSED

n

Delay1

(22n+12)

Area1

(11n+6)

AD2(1)

(5324n3+81712n2+4752n+864)

Delay2

(12n+3)

Area2

(37n+2)

AD2(2)

(5328n3+2952n2+477n+18)

2 56 28 379808 27 76 17036

3 78 39 894276 39 113 42381

4 100 50 1668000 51 150 83206

5 122 61 2732924 63 187 142703

6 144 72 4120992 75 224 224064

7 166 83 5864148 87 261 330481

8 188 94 7994336 99 298 465146

9 210 105 10543500 111 335 631251

10 232 116 13543584 123 372 831988

11 254 127 17026532 135 409 1070549

12 276 138 21024288 147 446 1350126

13 298 149 25568796 159 483 1673911

360

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060154
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

