
Efficient Query Processing and Data Integrity in

Cloud using Column Oriented Database

Abstract—Column oriented database system re-examines

how and when data is compressed. Column oriented database has

become quite popular among relational database system because

of its performance benefits. Column oriented database stores its

data as a adjacent records thus it has the advantage in the area

where combination of many separated units of queries requires

large amount of data. They are more efficient for read-only

query which requires accessing only the memory.

This paper provides a detail description of compressing

large sized data and storing in cloud using different compression

and query execution techniques. In this paper, we compare the

performance of row store based on different configurations with

column stores and shows that row oriented database

performance is quite slower. This paper then analyzes the

performance difference and shows that there is a significant

difference in storage level. This paper will discuss about

efficiently extracting data stored in cloud for improving the

performance of query execution. Finally this paper conveys the

performance benefits and utilization of column oriented database

in accessing and storing large database in cloud.

Keywords— column oriented database, data compression, run-

length encoding technique, null suppression.

I. INTRODUCTION

The database systems are simply a collection of records. It
often represented as large quantities of information which are
organized typically in form of tables. The traditional database
system is a two dimensional world as shown in fig. 1. All
values of row are stored in single entity in row oriented
database where as in column-oriented database system data
from each column are store together, which means particular
attribute can be accessed without having to read other attribute
of the row.

In a relational, row oriented database data values are
collected and managed as individual rows and events
containing related rows. They are not efficient at performing
operations that apply to the entire data set. Large database
consist of bulk of data set which may stored in cloud. Query
processing requests higher performance in cloud environment,
but traditional row oriented database cannot achieve high query
speed when processing large volume data. Designers need to
balance between optimizing query performance and
maximizing query flexibility.

Businesses applications need faster data accessing to
support rapid business decisions and better system utilization

[1]. Along with that, they need a simple, self managing system
that increases performance but helps to reduce administrative
complexities and expenses. Large database is so complex that it
becomes difficult to process in cloud by using traditional
relational data processing applications.

Database usually includes data sets with sizes beyond the
ability of commonly used software tools to capture, storage,
search, and process the data within a minimum elapsed time.
The trend to larger data sets is due to the additional information
obtained from analysis of a single large set of related data, as
compared to separate smaller sets with the same total amount
of data [2].

Fig. 1 Column Oriented Database

Shwetha C H
Department of Computer Science

And engineering

VTU Belgaum, KVGCE Sullia, DK

Balapradeep K N
Asst Professor

Department of Computer Science

And engineering

KVGCE Sullia, DK

Dr. Antony P J
Director, PG Studies

KVGCE Sullia, DK

VTU Belgaum

937

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041114

International Journal of Engineering Research & Technology (IJERT)

A Column Oriented DBMS provides unlimited scalability,
high availability and self managing administration. A more
efficient design is used in column-oriented systems, which
eliminates the storage space used in row-based systems. Some
column-oriented systems not only store data by column, but
store the data values comprising a column within the index
itself; efficient methods are selected to optimize storage and
query efficiency for each individual column’s data type [3].

Column-oriented organizations are more efficient when
aggregate needs to be computed over many rows but only for a
notably smaller subset of all columns of data, because reading
that smaller subset of data can reduce the execution time than
reading all data. Column-oriented organizations are more
efficient when new values of a column are supplied for all rows
at once, because that column data can be written efficiently and
replace old column data without touching any other columns
for the rows [4].

 Column-oriented compression schemes and query
processing techniques improve CPU performance by allowing
database operators to operate directly on compressed data. It
also keeps the memory consumption low.

II. BACKGROUND AND RELATED WORK

This section briefly presents the related works to
characterize column oriented database performance relative to
row oriented database system.

Today, there is a growing demand for high-quality
performance in query processing and data integrity. Almost all
of the research community has moved towards column oriented
database technique, which has overcome the lacks of the scope
of traditional row oriented databases system by introducing
different compression and query execution techniques. The
main developments in Column oriented database systems are as
follows.

Column stores have been implemented from the early days
of DBMS development. TAXIR was the first application of a
column-oriented database storage system with focus on
information-retrieval in biology. For many years, only
the Sybase IQ product was commercially available in the
column-oriented DBMS class. However, that has changed
rapidly in the last few years with many open source and
commercial implementations.

In a recent set of articles, Don Haderle and Michael
Stonebraker review a bit of database history and point the way
to column-oriented databases. Haderle and Stonebraker discuss
the constraints of the original relational database
implementations, and how changes in the cost of processing
can usher in column-oriented databases more suitable to
analyze rich data types.

Haderle and Stonebraker describe that Current relational
database management systems are largely built on designs from
the 1980s. Back then, computers were expensive and slow
relative to today's systems. The minimization of expensive
CPU cycles was the driving force in early relational DBMS
design. The market sweet spot was transaction processing
coupled with simple decision support, which was generally
satisfied by access on a limited set of attributes (dimensions)
[1].

Samuel R. Madeen published paper on Integrating
Compression and Execution in Column-Oriented Database
Systems. They discussed how it extended C-Store [1] with a
compression sub-system and presented some compression
schemes not traditionally used in row oriented DBMSs can be
applied to column-oriented systems. Then they evaluated a set
of compression schemes and showed that the best scheme
depends not only on the properties of the data but also on the
nature of the query workload.

Daniel J. Abadi presented a paper on Column Stores vs.
Row Stores: How Different Are They Really? [5]. He
compared the performance of a commercial row-store under a
variety of different configurations with a column-store and
show that the row-store performance is significantly slower on
a recently proposed data warehouse benchmark and then it
analyze the performance difference and show that there are
some important differences between the two systems at the
query executor level.

 Naresh Kumar and Dr. Kapil Kr. Bansal presented a paper
on Different Compression Techniques and Their Execution in
Database Systems to Improve Performance [6]. They described
that significant database performance gains can be had by
implementing light-weight compression schemes and operators
that work directly on compressed data. By classifying
compression schemes according to a set of basic properties, it
was able to extend C-Store to perform this direct operation
without requiring new operator code for each compression
scheme.

III. COLUMN ORIENTED DATABASE EXECUTION

 Column oriented database system is aimed at the data
integrity and fast query processing with different compression
techniques and query execution techniques. Business
environment uses complex queries of large size data.
Processing these complex queries may include null values and
repeated values.

A. Techniques

Different compression and query execution techniques are
used to improve the performance of query execution process
and data integrity of large sized data.

1) Compression techniques: Compression is a known
technique used by many database management systems to
increase performance [7]. Storing data in columns allows all
the data to store together which may also be of large size but
compressing the data within a column will reduce the size of
database and optimizes the query execution time. Compression
improves query performance by reducing the size of data on
disk, decreasing seek times, increasing the data transfer rate
and increasing buffer pool hit rate. Compression schemes not
traditionally used in row-oriented DBMSs can be applied to
column-oriented systems.

Techniques like Null Suppression and RunLength
Encoding are used for compression [9].

a) Null Suppression: Null suppression is the generic

term used for the technique that suppresses either zero or

blank. The fundamental idea is that consecutive zeros or

blanks in the data are deleted and replaced with a description

of how many there were and where they existed. Generally,

938

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041114

International Journal of Engineering Research & Technology (IJERT)

this technique performs well on data sets where zeros or

blanks appear frequently.

Here sequence of zeros and blanks are represented by a

special character and by a number that indicates the length of

sequence. Consider an example

Original Data:

ESSFnnnnnYtAtt4600000i77

Compressed Data:

ESSF#5YtAtt46%5i77

The compressed data has less size compared to original data.

b) RunLength Encoding: Run length encoding (RLE)

is useful for data with large runs of repeated values. Thus, it is

well-suited for columns that are sorted or that have

reasonable-sized runs of the same value. Consider the

following sequence of values:

- {aa,aa,aa,bc,ddd,ddd,ddd,ddd,ddd,ddd.. . . }

By counting the number of repeated values, we can code

such a sequence as {value / numRepetitions} pairs. The

sequence above could be represented as:

- {{aa / 3}, {bc/ 1}, {ddd/ 6}}

 The data structure {value / numRepetitions} is known as

an RLEDouble.

By storing the starting position in each RLE Double we

can improve performance. The sequence above would now be

Coded as:

{{aa /1/ 3}, {bc /4/ 1}, {ddd / 5 / 6}}.

The data structure{value / startPosition/ numRepetitions}

is known as an RLE Triple.

2) Query Execution Technique: Business application
requires maintaining and accessing millions of records at a time
which leads to large execution time [8]. The paper focuses on
reducing execution time by considers the problem of
integrating compression and execution so that the query
executer is capable of focusing on compressed data. This leads
to gain in performance by improving I/O and CPU.

Next it analyzes the problem of tuple construction. Tuple
construction is required when operators need to access multiple
attributes from the same tuple [9].

Due to reduction in the file size, execution time of complex
queries is also decreased. This has a huge benefit in business
and finical sectors.

IV. EXPERIMENTAL WORK

 This section compares the row oriented approaches to the
performance of column oriented database on the complex
database.

In row oriented database uses scan methods to access the
records. Scan fetches millions of records which are normally
used in analytical business. But when retrieving a particular
attribute efficiency of scan will reduce. Since fetching of data
need to scan each of the row in the memory or disk which
decrease the performance by increasing the execution time.

Consider an Architectural design shown in the Fig. 2.

Fig. 2 Architectural design

Files of different size are provided as input from different
user. These files may contain old database script or a million of
records. They require evaluating the queries much more
quickly. This can be done by storing each column separately
and compressing the data. Run length encoding, null
suppression and complex joins techniques are used to reduce
the size of database and stores at cloud. Column oriented
representation provides high speed storage and retrieval of
large amount of data in a cloud.

 User can access compressed file in a cloud and can
request for query processing. User can compare the size of
compressed and uncompressed files by viewing the file details.

V. PERFORMANCE ANALYSIS

 The Column oriented databases are best suited for read-
only queries where only parts of the data are accessed. This has
improved the bandwidth utilization in cloud for complex query
execution. By using different compression techniques,
performance and data integrity in the queries execution has
been increased. Column oriented database reduces the scan
time which was inefficient in traditional row oriented database
systems. Fig. 3 shows the average query execution time for a
huge data. Considering 1TB of data is cloud. These data has
been compressed and records are integrated such that its query
execution time has been reduced significantly.

939

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041114

International Journal of Engineering Research & Technology (IJERT)

Fig. 3 Average Execution time based on different database size

VI. CONCLUSION

The Columnar Database is evolving software which can

overcome the lacks of the scope of row oriented databases.

This paper has focused on data integrity and fast query

processing by compressing data size in cloud. The average

execution time shown in Fig. 3 summarizes the result of data

integrity and compression technique used in column oriented

database. Business transactions, queries including unrestricted

aggregation and time based sequences can be accessed within

couple of seconds. In summary, this paper shows that

significant database performance gains can be had by

implementing compression on large database and operators that

work directly on compressed data

REFERENCES

[1] en.wikipedia.org/wiki/Column-oriented_DBMS.

[2] Daniel J. Abadi, Peter A. Boncz, Stavros Harizopoulos, Column-
oriented Database Systems, VLDB ’09, August 24-28, 2009, Lyon,

France.

[3] Miguel C. Ferreira, Samuel R. Madden, Compression and Query
Execution within Column Oriented Databases.

[4] Daniel J. Abadi, Query Execution in Column-Oriented Database

Systems,
[5] D. J. Abadi, S. R. Madden, N. Hachem, Column-stores vs. row-stores:

how different are they really?, in: SIGMOD’08, 2008, pp.967–980.

[6] Tejaswini Apte1, Dr. Maya Ingale2, Dr. A.K. Goyal Sinhgad Institute of
Business Administration & Research, Kondhwa(Bk.),Performance

Improvement Tecniques in column oriented Database.

[7] Naresh Kumar, Dr. Kapil Kr. Bansal Assistant Professor Department of
Information Technology , SRM University, NCR Campus,Different

Compression Techniques and Their Execution In Database Systems To

Improve Performance.
[8] Punam Bajaj Simranjit Kaur Dhindsa Department of Computer Science

& Engineering, Chandigarh Engg. College, Mohali, India, Vision

towards Column-Oriented Databases.
[9] Priyanka Raichand and Rinkle Rani Aggarwal Department of Computer

Science and Engineering Thapar University, Patiala ,A Short Survey Of

Data Compression Techniques For Column Oriented Databases.

940

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041114

International Journal of Engineering Research & Technology (IJERT)

