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Abstract— Experimental Eigen frequency values for Square 

and Rectangular  flat Plate were measured using Comsole 

analysis and various mode shapes were recorded experimentally 

with considerations of  various parameters like acceleration, 

velocity, maximum and minimum surface area, Reaction force 

and time duration. It was found that these mode shapes agree 

totally with the theoretical considerations and assumptions. It 

suggest that plate and membrane should have very similar 

vibration behaviour and by adding several waves on boundary 

approximate eigen frequency equations are derived. 

Keywords— Rectangular Plate,Square Plate Eigen Frequency, 

Modes,Vibrations. 

I. INTRODUCTION  

The vibration of beams and plates is important in many 

applications pertaining to Mechanical, Civil and Aerospace 

Engineering. Beams and plates used in real practice may have 

appreciable thickness where the transverse shear and the 

rotary inertia are not negligible as assumed in the classical 

theories. The usual first step in performing dynamic analysis 

is determining natural frequencies and mode shapes of 

structures with damping neglected. These results characterize 

the basic dynamic behavior of the structure and are an 

indication to how the structure will respond to dynamic 

loading. The natural frequencies of the structure are 

frequencies at which the structure naturally tends to vibrate. 

                    Many times, we use the terms vibration and 

oscillation without knowing the difference between them. 

The term oscillation refers strictly to the repeating motion of 

a point mass or that of a rigid body while the term vibration 

refers to the repeating motion or deformations of an elastic 

structure. Thus any oscillation is a term used only in cases 

like the motion of a pendulum or that of a ship as a rigid body 

moving on the wavy seas while vibration is a term used for 

phenomenon exhibited by structures such as rotating fans or 

motors etc. Vibration involves deformation by definition 

while an oscillating structure does not deform. In Structural 

and Mechanical engineering context, oscillation and vibration 

are differentiated based on the “restoring force” present in the 

system. For both oscillation and vibration, the mass of a 

system at rest (static equilibrium) need to be disturbed from 

its rest or equilibrium position. The mass gets excited and 

initiate oscillation or vibration; but only with the presence of 

a restoring force. If the disturbance is from an unstable or 

neutral equilibrium, possibility of any restoring force is 

lacking and the mass eventually moves away and occupies a 

new position. In the case of (i) stable equilibrium of a mass or 

(ii) mass being attached to a spring (or an elastic member),a 

restoring force comes into being and the mass is tended back 

to the original equilibrium position and as a result, periodic 

motion starts. In case (i), generally, component of gravity (g) 

operated upon the associated mass component serves as 

restoring force. Thus the system undergoes no “elongations 

or strains” than rigid body motion, as in the case of a simple 

pendulum. Such “no-strain” periodic motions are referred to 

as oscillation. In case (ii), spring force developed on the 

attached spring or elastic member serves as the restoring 

force. Thus the attached member undergoes “periodic 

elongation or strain”. Thus the mass as well as attached 

member undergoes periodic motion. Such “strained” periodic 

motions are referred to as vibrations. In the expression for 

natural frequency, ω, s'g' is a parameter in the case of 

oscillations and 'k' in the case of vibrations. For the 

oscillation of simple pendulum, ω =sqrt (g/l), whereas for the 

vibration of spring-mass system, ω = sqrt(k/m); with usual 

notations. 
 

II. DYNAMIC LOAD 

The very nature of the load means that the response of the 

structure i.e the displacement, stress, reactions etc. also varies 

with time. Dynamic load is the load which varies. The 

variation may be with respect to time (Ex: reciprocating 

engine) or with respect to space (Ex : Moving vehicle on 

bridge). For example in a Dam the water level changes 

throughout the year then should we consider it as a dynamic 

load for designing the dam? NO, because though the load is 

changing with respect to time its inertial effect is very less for 

practical consideration. To make it more clear, a Dynamic 

load (externally applied) is not only a function of time, say 

F(t), but also one which excites the mass of the system 

causing inertial effect. The physicist who deals with the 

problem has to decide whether the force, F(t) is a dynamic 

one or not based on the significance of the excitation. It is 

also interesting to note that a dynamic load is not essential to 

produce vibration or oscillation. An initial displacement or 

velocity will trigger free vibration in an appropriate system 

(Ex: a spring-mass system like shock absorber of automobile) 

                     Research on the vibration beams and plates can 

be divided into three categories. Firstly, there exist exact 

solutions only for a very restricted number of simple cases 

.Secondly, studies of semi-analytic solutions, including the 

differential quadrature method and the boundary 

characteristic orthogonal polynomials. Finally, there are the 

most widely used discretization methods such as the finite 

element method and the finite difference method. As it is 

more useful to have analytical results than to resort to 

numerical methods. 
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Fig 1 Vibration mode of a clamped rectangular plate 
 

III. EXPERIMENTAL ANALYSIS  

Consider a rectangular plate which has dimensions (a*b) 

in the (x1, x2) plane and thickness 2h in x3 direction. We seek 

to find out the free modes of vibration  

 
Fig 2 Vibration mode of a rectangular plate 

 

Assume a displacement field of the form, 

ώ (x1, x2, t)= W(x1, x2) F(t) 
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Plugging these into the governing equation gives, 
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where w2 is a constant because the left hand side is independent 

of t while the right hand side is independent of x1, x2. From the right 

hand side, we then have 

        
( ) iwt iwtf t A B 

                                                       (4) 

Altogether there are 21 combinations of simple boundary 

conditions i.e., either clamped (C), simply supported (SS), or 

free (F) for rectangular plates. Frequency parameters are 

expressed in the terms if ωα2 , where α is a length 

dimension, and do not depend upon Poisson’s ratio unless 

atleast one edges of the plate is free. However, because D 

contains v, the frequencies themselves depend upon v for all 

the cases.  

Warburton presented the first comprehensive collection of 

solutions for rectangular plates. He used Rayleigh method 

with deflection functions as the product of the beam 

functions; that is, 
 

    W (x,y)= X(x) Y(y)                                                            (5) 

 

 

 

 

 

Where X(x) and Y(y) are fundamental mode shapes having 

boundary conditions of the plate. These function, exactly 

satisfies the boundary conditions for the plate, except in the 

case of free edge where shear condition is approximately 

satisfied. The six possible distinct sets of boundary conditions 

along the edges x=0 and x=a are satisfied by the following 

mode shapes. 

a) Simply supported at x=0 and x=a: 
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b) Clamped at x=0 and x=a: 
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       Where the values of 1 are obtained as roots of 
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     Where the values of 2 are obtained as roots of 

     
2 2tan( / 2) tanh( / 2) 0     

a) Free at x=0 and x=a: 
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         With 1  and 2  are defined in above equations 

b) Clamped at x=0 and free at x=a: 

3 3 3 3 3 3

3 3

sin sinh
( ) cos cosh ( )(sin sinh )

cos cosh

x x x x
X x

a a a a

     

 


   

         (10)

 

Where 
3 3cos cosh 1     

c) Clamped at x=0 and simply supported at x=a: 
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With 2  is defined in above equation 

d) Free at x=0 and simply supported at x=a: 
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        With 2  is defined in above equation 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS030291
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 03, March-2017

254



 

Fig 3 Boundary Conditions of rectangular plate 

 

IV Boundary Conditions for SS-SS-SS-SS 

The plates with all sides SS is the most simple to solve for 

rectangular plate. 

The boundary conditions are 

For x=(0,a), 
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For x=(0,b), 
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determined from the initial conditions, m and n are integers. 
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The node lines for general rectangle are simply straight lines 

parallel to the edges. For square plates however two mode 

shapes may have the same frequency and exist 

simultaneously, their for a frequency are shown in the figure. 

 

Fig 4 Angle orientation with modes 

V CALCULATIONS 
 

% Model:              Simply Supported Plate.mph 

% Version:            COMSOL 5.2.1.262 

% Dimension:          3 

% Nodes:              1047 

% Expressions:        11 

% Description:        % Length unit: metre 

TABLE I 

Time 
(secs) 

 

Reaction force, z component 

 

%X %Y %Z 
Solid.RFz 

(N) 

0 0 0 0 0.007369 

0.1 0 0 0 33.4412 

0.2 0 0 0 47.2360 

0.3 0 0 0 96.1057 

0.4 0 0 0 98.05461 

0.5 0 0 0 98.05461 

 

% Model:              Simply Supported Plate.mph  

% Version:            COMSOL 5.2.1.262 

% Dimension:          3 

% Nodes:              1047 

% Expressions:        11 

% Description:        Total acceleration, Z component 

TABLE II 

Time 
(secs) 

 

Total acceleration, z component 

 

%X %Y %Z 
solid.accZ 

(m/s^2) 

0 
0.08333            0 0.075 -0.006533 

0.1 0.08333            0 0.075 -0.006533 

0.2 0.08333            0 0.075 0.01410 

0.3 0.08333            0 0.075 0.00294 
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Time 
(secs) 

 

Total acceleration, z component 

 

%X %Y %Z 
solid.accZ 

(m/s^2) 

0.4 0.08333            0 0.075 -0.01571 

0.5 0.083333 0 0.075 0.00818 

 

% Model:              Simply Supported Plate.mph 

% Version:            COMSOL 5.2.1.262 

% Dimension:          3 

% Nodes:              1047 

% Expressions:        11 

% Description:        Reaction force, y component 

% Length unit:        m 

TABLE III 

Time 

(secs) 

 

Reaction force, y component 

 

%X %Y %Z 
Solid.RFz 

(N) 

0 0.109246 0.12593 0.15 0 

0.1 0.109246 0.12593 0.15 0 

0.2 0.109246 0.12593 0.15 0 

0.3 0.109246 0.12593 0.15 0 

0.4 0.109246 0.12593 0.15 0 

0.5 0.109246 0.12593 0.15 0 

 

% Model:              Simply Supported Plate.mph  

% Version:           COMSOL 5.2.1.262 

% Table:              Maximum and minimum values - Max/min surface 

TABLE IV 

Time 

(secs) 

 

Maximum and minimum values - Max/min surface 

%X %Y %Z 
Total 

displace

ment (m) 

0 3 0.416666 0.075 2.891E-5 

0.1 1.49999 0 0.0749998                9.047E-5 

 

% Model:              Simply Supported Plate.mph 

% Version:            COMSOL 5.2.1.262 

% Dimension:          3 

% Nodes:              1047 

% Expressions:        11 

% Description:        Time 

 

 

 

 

TABLE V 

Time 
(secs) 

 

Time 

 

%X %Y %Z 
Time 

(seconds) 

0 0 0.0833      0.075 0 

0.1 0 0.0833      0.075 0.09999 

0.2 0.0833      0 0.075 0.1999 

0.3 0.0833      0 0.075 0.3000 

0.4 0.0833      0 0.075 0.39999 

0.5 0.0833      0 0.075 0.5000 

 

% Model:              simply supported plate.mph 

% Version:            COMSOL 5.2.1.262 

% Dimension:          3 

% Nodes:              1047 

% Expressions:        11 

% Description:        First principal strain 

% Length unit:        m 

TABLE VI 

Time 

(secs) 

 

First principal strain  

 

%X %Y %Z solid.ep1 

0 0 0 0 1.21689 

0.1 0 0 0 7.8797 

0.2 0 0 0 1.0659 

0.3 0 0 0 2.0651 

0.4 0 0 0 2.1072 

0.5 0 0 0 1.3505 

 

% Model:              simply supported plate.mph 

% Version:            COMSOL 5.2.1.262 

% Dimension:          3 

% Nodes:              1047 

% Expressions:        11 

% Description:        Velocity magnitude 

% Length unit:        m 

TABLE VII 

Time 

(secs) 

 

Velocity magnitude  

%X %Y %Z 
solid.vel 

(m/s) 

0 0 0 0 3.88178 

0.1 0 0 0 5.9605 

0.2 0 0 0 6.4712 

0.3 0 0 0 9.0645 

0.4 0 0 0 4.7696 

0.5 0 0 0 2.4333 
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Fig 7 i) Rectangular Plate after applied load for different values of time “t” 

 

Fig 7 ii) Rectangular Plate after applied load for minimum and maximum 

surface 
 

          

Fig 8 Photographic record of time averaged holographic 
interferograms of rectangular plate 

 
 

 

 

 

 

 

VI CONCLUDING POINTS 

The vibration frequency for functionally graded plates under 

in-plane hydrostatic pressure and resting on, have readily 

been given in terms of the eigenvalue of the membrane with 

the shape of the plate, and clamped at the edges. Therefore, 

the exact correspondence between the buckling and vibration 

eigenvalues of the third order plate theory, the first order 

plate theory and the classical plate theory for functionally 

graded polygonal plates with simply supported rectilinear 

edges and the vibration eigenvalue of the corresponding 

membrane has been established. Some available analogies 

between single-layer homogeneous plates, symmetric 

sandwich plates and laminated plates and membranes are 

special cases of the present results. The present results also 

apply to a transversely isotropic plate because we have not 

required the shear modulus to satisfy μ’=E/2(1+v). For a 

transversely isotropic material with the plane of isotropy 

parallel to the mid-plane of the plate, E and l are respectively 

Young's modulus and the Poisson ratio in the plane of 

isotropy, and μ’ is the shear modulus in the transverse 

direction. A typical example is laminated composite plate 

with transversely isotropic lamina, which is widely used in 

missiles and re-entry vehicles due to its special thermo-

mechanical properties suited for the thermal protection and its 

high flexibility in transverse shear. 

The Experimental Eigen values for square and rectangular 

plate agree favorably with several predictions and theoretical 

considerations and agree very well with several 

considerations like Rayleigh Ritz method for mode shapes. 
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