

Abstract—Over the past few decades, social networking has been

a crucial part of every individual’s life, which has led to social

sign-on concept. The elementary objective of Social sign-on

protocol is to provide succor to the user. It is a form of single

sign-on using existing login information from a social networking

service such as Facebook, Twitter or Google+ to sign into a third

party website in lieu of creating a new login account specifically

for that website. OAuth 2.0 is an open authorization protocol

which enables applications to access each other’s data by social

sign on. In this paper, we have discussed the hurdles for wide

adoption of this protocol and also our model for elevating the

performance of this Authentication protocol.

Index Terms—Authentication, Networking, OAuth, Protocol,

Social sign-on, Third party login

I. INTRODUCTION

OAuth 2.0 is an open authorization protocol which enables

applications to access each other‟s data by social sign on.[3]

OAuth 2.0 is the next evolution of the OAuth protocol which

was developed in late 2006. OAuth 2.0 focuses on client

developer simplicity while providing specific authorization

flows for web applications, desktop applications, mobile

phones, and living room devices. It is an authorization

protocol for third part login[7].

II. OVERVIEW OF OAUTH 2.0

A. Roles

OAuth defines four roles:

1. Resource owner:used to accord access to a protected

resource.

2. Resource server: hosts the protected resources,

which accepts and responds to protected resource

requests using access tokens.

3. Client:is the entity which makes protected resource

requests on behalf of the resource owner and with its

authorization. There are two types of clients:

Confidential and Public.

4. Authorization server:issues access tokens to the

client after successfully authenticating the resource

owner and obtaining authorization.

B. Authorization Grant

An authorization grant is a credential representing the resource

owner's authorization used by the client to obtain an access

token. There are four grant types:

1. Authorization Code:It is obtained by using an

authorization server as an intermediary between the

client and resource owner. [5]

2. Implicit: In the implicit flow, the client is issued an

access token directlyinstead of issuing the client an

authorization code. The grant type is implicit as no

intermediate credentials are issued.[5]

3. Resource Owner Password Credentials:The resource

owner password credentials (i.e. username and

password) can be used directly as an authorization

grant to obtain an access token.[5]

4. Client Credentials: The client credentials can be used

as an authorization grant when the authorization

scope is limited to the protected resources under the

control of the client, or to protected resources

previously arranged with the authorization server.[5]

III. WORKFLOW OF OAUTH 2.0

As shown in Fig 1, firstly the client requests authorization

from the resource owner. The authorization request can be

made directly to the resource owner (as shown), or preferably

indirectly via the authorization server as an intermediary. The

client receives an authorization grant. The client requests an

access token by authenticating with the authorization server

and presenting the authorization grant. The authorization

server authenticates the client and validates the authorization

grant, and if valid issues an access token. The client requests

the protected resource from the resource server and

authenticates by presenting the access token. The resource

server validates the access token, and if valid, serves the

request.

Fig 1 Workflow of the protocol

Elevating the performance of social sign-on protocol OAuth 2.0

Gurleen, Research Scholar, BBSBEC,India Aggarwal, D. Professor, BBSBEC, India

1337

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110416

IV. HURDLES FACED BY OAUTH 2.0

However, with the emergence of new OAuth Protocol 2.0,

simplicity and performance increased, but also many

limitations of OAuth 2.0 came into existence:

• CSRF Attack - OAuth2.0 is prone to CSRF (cross-site

request forgery) attack. It‟s also known as session riding or

XSRF.Cross site request forgery is the type of attack when an

attacker forces victim's web browser to perform an unwanted

action on a user trusted website without user's interaction in

this action.[1] This attack exploits the trust of a website on the

user's browser. In a recent CSRF attack against residential

ADSL routersin Mexico, an e-mail with a malicious IMG tag

was sent to victims. By viewingthe email message, the user

initiated an HTTP request, which sent a routercommand to

change the DNS entry of a leading Mexican bank, making any

subsequent access by a user to the bank go through the

attacker‟s server.[7]

• Unbounded tokens - In 1.0, the client has to present two sets

of credentials on each protected resource request, the token

credentials and the client credentials. In 2.0, the client

credentials are no longer used. This means that tokens are no

longer bound to any particular client type or instance. [6]

• Bearer tokens - 2.0 got rid of all signatures and

cryptography at the protocol level. Instead it relies solely on

TLS (Transport Layer Security).[6]

• Expiring tokens - 2.0 tokens can expire and must be

refreshed. This is the most significant change for client

developers from 1.0 as they now need to implement token

state management. The reason for token expiration is to

accommodate self-encoded tokens – encrypted tokens which

can be authenticated by the server without a database look-up.

Because such tokens are self-encoded, they cannot be revoked

and therefore must be short-lived to reduce their exposure.

Whatever is gained from the removal of the signature is lost

twice in the introduction of the token state management

requirement.[6]

• Grant types - In 2.0, authorization grants are exchanged for

access tokens. Grant is an abstract concept representing the

end-user approval. It can be a code received after the user

clicks „Approve‟ on an access request, or the user‟s actual

username and password. The original idea behind grants was

to enable multiple flows. 1.0 provides a single flow which

aims to accommodate multiple client types. 2.0 adds

significant amount of specialization for different client

type.[6]

V. MODEL FOR ENHANCING THE PERFORMANCE

We have developed an application to overcome the hurdles

and to enhance the performance of this protocol.We have

discussed its basic algorithm and displayed its results.

A. Outline and Architecture

Cross-site request forgery, also known as one-click attack or

session riding andabbreviated as CSRF or XSRF, is an attack

against web applications.In a CSRF attack, a malicious web

page instructs a victim user‟s browser tosend a request to a

target website. It occurs when a malicious web site, email or

web

forum causes a victim‟s web browser to perform an undesired

action on a trusted web site.[2] If the victim user is currently

logged into the

target website, the browser will append authentication tokens

such as cookies tothe request, authenticating the

maliciousrequest as if it is issued by the user.

B. Results

When the code is executed, a valid access token is generated

after checking the credentials and then the authentication is

completed by showing the message that it is a secure resource.

Fig 2. Verification of Credentials

Fig 3. Conformation page for secure resource access

VI. CONCLUSION

OAuth 2.0 presents an exalted concept of social sign-on by

providing more security than traditional concepts. But, it can

be more secure if all the confrontation faced by this protocol is

met.

1338

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110416

Appendix

// Code for Login Module

public class LoginController : Controller

[HttpGet]

public ActionResult Index(string returnUrl)
{

var response = OAuthServiceBase.Instance.RequestToken();

 return View(new LoginModel

 {

 RequestToken = response.RequestToken,

 ReturnUrl = returnUrl

 });

[HttpPost]

public ActionResult Index(string requestToken, string

username, string password, bool? rememberMe, string

returnUrl)

{

varaccessResponse =

OAuthServiceBase.Instance.AccessToken(requestToken,

"User", username, password,

rememberMe.HasValue&&rememberMe.Value);

Session["UserAuthenticated"] = accessResponse;

if (!accessResponse.Success)

{

OAuthServiceBase.Instance.UnauthorizeToken(requestToken)

varrequestResponse =

OAuthServiceBase.Instance.RequestToken();

return View(new LoginModel

{

RequestToken = requestResponse.RequestToken,

 Username = username,

RememberMe =

rememberMe.HasValue&&rememberMe.Value,

ErrorMessage = "Invalid Credentials",

 ReturnUrl = returnUrl

 });

 }

ViewData["ReturnUrl"] =

String.IsNullOrEmpty(returnUrl)? "/": returnUrl;

return View("Success", accessResponse);

}}}

// Code for Authorization

namespace OAuth2.Demo.Controllers

{

 public class HomeController : Controller

{

 public ActionResult Index()

{

return View();

}

[Authorize]

public ActionResult Secure()

{

if (Session["UserAuthenticated"] != null)

{

return View();

}

else

{

return View("index.cshtml");

}}}}

// Code for Request token, Access Token, Refresh Token

namespace OAuth2.Demo.Controllers

{

public class OAuthController : Controller

{

[AcceptVerbs(HttpVerbs.Get | HttpVerbs.Post)]

public ActionResult RequestToken()

{

var response = OAuthServiceBase.Instance.RequestToken();

return Json(response, JsonRequestBehavior.AllowGet);

}

[AcceptVerbs(HttpVerbs.Get | HttpVerbs.Post)]

public ActionResultAccessToken(string grant_type, string

username, string password, bool? persistent)

{

varrequestToken = Request.GetToken();

var response =

OAuthServiceBase.Instance.AccessToken(requestToken,

grant_type, username, password,

persistent.HasValue&&persistent.Value);

return Json(response, JsonRequestBehavior.AllowGet); }

[AcceptVerbs(HttpVerbs.Get | HttpVerbs.Post)]

public ActionResultRefreshToken(string refreshToken)

{

 if (String.IsNullOrEmpty(refreshToken))

refreshToken = Request.GetToken();

var response =

OAuthServiceBase.Instance.RefreshToken(refreshToken);

return Json(response, JsonRequestBehavior.AllowGet);

}

Authorize]

[AcceptVerbs(HttpVerbs.Get | HttpVerbs.Post)]

public ActionResultUnauthorize()

{

var response = new JsonResponse();

varaccessToken = Request.GetToken();

response.Success =

OAuthServiceBase.Instance.UnauthorizeToken(accessToken);

return Json(response, JsonRequestBehavior.AllowGet);

}}}

ACKNOWLEDGMENT

“ Gur bin ghorandhaar, Guru bin samajnaaavai”

Waheguru, The Almighty is to be thanked first and foremost

for everything that has been destined for me. I am grateful that

my destiny bestowed upon me Mr. Deepak Aggarwal as Guru

and guide for my research work. I am indebted to Mr. Deepak

Aggarwal for supervising my work with his outstanding

knowledge and countless time. I would express my gratitude

to Mr. R S Uppal for allowing me to draw upon his precious

1339

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110416

and valuable time. I am also grateful to all my family

members for their immense love..

REFERENCES

1. Siddiqi, M. , Verma, D. ,” Cross Site Request Forgery: A

common web application weakness”, Communication Software

and Networks (ICCSN), 2011 IEEE 3rd International

Conference on 27-29 May 2011, pp 538-543.

2. Boyan Chen, Zavarsky, P., Ruhl, R. , Lindskog, D., “A Study of

the Effectiveness of CSRF Guard”, 2011 ieee third international

conference on social computing ,9-11 Oct. 2011,pp 1269-1272.

3. Barry Leiba, "OAuth Web Authorization Protocol ",

www.computer.org/internet computing, Vol. 16, No. 1.

January/February, 2012

4. M. Noureddine, " A provisioning model towards OAuth 2.0

performance optimization", Cybernetic Intelligent Systems

(CIS), 2011 IEEE 10th International Conference, Sept. 2011, pp.

76-80

5. D. Hardt, http://tools.ietf.org/html/draft-ietf-oauth-v2Eran

Hammer, "OAuth 2.0 and the Road to Hell",

http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/ ,

July 26, 2012.

6. Tatiana, A. , “Cross-Site Request Forgery: Attack and Defense”,

Consumer Communications and Networking Conference

(CCNC), 2010 7th IEEE, 9-12 Jan. 2010, pp 1-2

7. Lin, X.L., Zavarsky, P., Ruhl, R., Lindskog, D., :Threat

Modeling for CSRF Attacks. In: the 2009 International

Conference on Computational Science and Engineering,

Vancouver (2009).

8. Fung B. S. Y., “A Fine-Grained Defense Mechanism Against

General Request Forgery Attacks”, In Proc. of IEEE/IFIP DSN

Student Forum, 2011.

9. Alexa the Web Information Company. http://www.alexa.com.

1340

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110416

