
Embedded Web Server based Interactive data acquisition and Control System

using RTLinux

Mr.S.B.Kawade,

Department of E&TC, Raisoni College of Engineering, Ahmednagar (Pune University)

Prof.S.K.Waghmare

Department of E&TC, Raisin College of Engineering, Ahmednagar (Pune University)

Abstract

Data acquisition systems (DAS) interface between the

physical parameters like as temperature, pressure, flow

which are analog, and the artificial world of digital

computation and control. Collecting, monitoring and

controlling data is a tedious and lengthy process.

Although necessary, it is a task that we would rather

not spend much more time on it. There are data-

acquisition and control devices that will be a replace

for a operator and supervisor in a various site job

operation therefore it’s require only single person for

interact and monitoring the system. The idea behind of

this work is to evaluate the Interactive data acquisition

for industrial processes management systems in order

to raise the industries activities in increasing energy

efficiency. For this purpose are used advanced methods

of data analysis and collection, monitoring and control

systems. This system uses ARM9 Processor convenient

with operating System is RTOS.

1. Introduction

Data acquisition and control systems are used in

many different industries today in order to achieve

greater productivity in our modern industrial societies.

This paper approaches a new system that contains

inbuilt Data Acquisition based on Web Server for

Interactive Data Acquisition and Control system plays

the major role in the rapid development of the

Industries that presently employ such automatic

systems include steel making, food processing, paper

production, oil refining, chemical manufacturing,

textile production, cement manufacturing, and others. It

has been designed with the help of many electrical,

electronic and high voltage equipments; it makes and

Control system (DACS) with on-line interaction.

A similar system in provides data acquisition with

no concern for remote access. In these applications,

data are stored in a central server and are then served to

the clients via the Internet. The client framework is in a

central server and has all the applications. A person that

needs to access any data must first access the server.

An indirect access to the data-acquisition unit makes

the system unattractive for real-time control

applications, where direct interaction with the system

may be required [2].

In these Papers, RTOS are designed to support

multitasking. This feature is important for realtime

applications .An RTOS will provide facilities to

guarantee deadlines will be met alongwith it will

provide scheduling algorithms in order to enable

deterministic behaviour in the system. Also RTOS is

valued more for predictability than throughput .During

task scheduling, a context switch is sometimes

described as the kernel suspending execution of one

process on the CPU and resuming execution of some

other process that had previously been suspended. Its

advocates also claim that software context switching

allows for the possibility of improving the switching

code [9].Embedded computer technology, as an

important part of computer field, is closely related to

people's lives and has become hot in research and

application area. Data acquisition, which is an

important branch of computer applications, is an

integrated application of technology, based on sensors,

signal measurement, data processing and embedded

systems. Because of a wide variety of signals of

measured object e.g. electrical parameters of current,

voltage, power, frequency, analog, circuit breaker

status, digital signal protective actions, the amount of

electrical pulses degree, non-electrical Parameters of

temperature, pressure and other thermal signal, water

level , flow and other hydraulic signal; pulse, ECG,

speed and other signals, the usual practice is to design

special data acquisition systems according to different

1942

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90747

signals, and thus, there are some limitations. Therefore,

we propose to build a universal data acquisition system

consisting of hardware and software platforms, based

on ARM9 microprocessor core. We just need to choose

different data acquisition boards according to different

measured signals, and then a user-defined data

acquisition system can be formed conveniently and

flexibly [9].

2. Overall System Design

An Overall Interactive Data Acquisition System is

comprised of two parts; Hardware (an I/O sub-system,

a host computer) and the controlling software.

A) Hardware Design Section

I) IDACS Design IDACS design is the major part in

hardware. ARM9 processor is a heart of this system.

The general hardware structure of the IDACS is shown

in Fig.1 The interactive intelligent data acquisition and

control system based on embedded ARM platform for

globalization, each acquisition and control device

equipped with 12-way & 24-way acquisition/control

channels and isolated from each other.

Each I/O channel can select a variety of electrical and

non electrical signals like current, voltage, and

resistance etc., Here Special ADC required for digital

data acquisition. It collects the measured data and it’s

stored in external memory. This memory is useful for

data base in Web server mode. The ARM processor

handles the Ethernet service and RS485

communication. For controlling the data by some other

PCs or network via RS485 & Ethernet.ARM processor

has internal I2C module has supporting to the any other

peripherals. Acquired data usually needs to be

transferred for further processing. There are two major

kinds of data transfer types: wired, wireless and

software. Usually data transfer speed is not important

for acquisition systems, because there is no large

amount of data involved. Wire and wireless data

transfer is used to transfer data from hardware sensors.

Both raw and processed data can be transferred for

collection. It is possible to use different types of data

transfer methods in one system. Software links are used

to collect data from other, already installed systems,

such as SCADA, using standard data transfer protocols,

such as OPC and DATA socket [5].

Figure. 1. General Structure of the IDACS

II) Physical I2C Bus This is just two wires, called

SCL and SDA. SCL is the clock line. It is used to

synchronize all data transfers over the I2C bus. SDA is

the data line. The SCL & SDA lines are connected to

all devices on the I2C bus. There needs to be a third

wire which is just the ground or 0 volts. There may also

be a 5volt wire is power is being distributed to the

devices. Both SCL and SDA lines are "open drain"

drivers. What this means is that the chip can drive its

output low, but it cannot drive it high. For the line to be

able to go high you must provide pull-up resistors to

the 5v supply. There should be a resistor from the SCL

line to the 5v line and another from the SDA line to the

5v line. You only need one set of pull-up resistors for

the whole I2C bus, not for each device. The value of

the resistors is not critical. I have seen anything from

1k8 (1800 ohms) to 47k (47000 ohms) used. 1k8, 4k7

and 10k are common values, but anything in this range

should work OK. I recommend 1k8 as this gives you

the best performance. If the resistors are missing, the

SCL and SDA lines will always be low - nearly 0 volts

- and the I2C bus will not work [5].

1943

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90747

B) Controlling Software of the System

I).RTLINUX Overview

 Figure. 2. RTLinux architecture

RTLinux is a hard real-time OS, as opposed to soft

real-time systems or those that make best efforts toward

fulfilling requests. RTLinux is a hard real-time kernel

that guarantees hard real-time performance and runs

Linux or BSD UNIX as an idle task when there are no

real-time demands. The dual kernel approach taken by

RTLinux requires a slightly different approach to real-

time programming. Real-time code exists as threads

managed by the real-time kernel. All user management

code is run as a normal process managed by Linux,

communicating through a variety of mechanisms, such

as FIFOs and shared memory. This code separation

abstracts real-time code into a simpler code base

concentrating solely on real-time demands, simplifying

development of both the real-time code and the

management interfaces. Some real-time OSs

approaches try to force the kernel and user space code

to do well with both real-time and non-real-time

scheduling constraints, often with complex and

disastrous results. Instead, RTLinux takes the normal

UNIX approach, where a tool is written to do one thing

and do it well, rather than cramming everything into a

'one size fits all' system. This results in a simpler

system encouraging simpler code, while simultaneously

providing a deterministic real-time environment that is

constrained only by the hardware powering it [4].

II) Interrupt handling Interrupts usually block the

highest priority tasks. It Need to minimize the

unpredictability and latency. There are two types of

interrupts in RTLinux: hard and soft. Soft interrupts are

normal Linux kernel interrupts. Hard interrupts, on the

other hand, have much lower latency.

rtl_request_irq () - Add RT Interrupt Handler

rtl_free_irq () – Remove RT Interrupt Handler

rtl_get_soft_irq () - Install Software interrupt Handler

rtl_free_soft_irq ()–Remove Software interrupt Handler

rtl_global_pend_irq () - Schedule a Linux Interrupt

THE REAL-TIME CODE:

#include <rtl.h>

#include <time.h>

#include <unistd.h>

#include <rtl_sched.h>

#include <rtl_fifo.h>

#include "control.h"

RTLINUX_MODULE (thread_mod);

Pthread_t tasks;

int fds;

A realtime application is usually composed of

several ``threads'' of execution. Threads are light-

weight processes which share a common address space.

Conceptually, Linux kernel control threads are also

RTLinux threads. In RTLinux, all threads share the

Linux kernel address space [4].

1944

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90747

II) Scheduling in RTLINUX

Figure. 3. RTLinux Scheduling

RTLinux can use different scheduling algorithms

depending on the needs of its users. RTLinux uses a

simple FIFO scheduling but can also use EDF and rate

monotonic Scheduling if so desired. For compatibility

reasons RTLinux makes available the POSIX function

calls for scheduling [9].

3. Web Server Analysis

As an example of how to use the previously

described module, a demonstration HTTP server was

implemented. The module must have been powered on,

properly connected to LAN and the TCP/IP settings of

the local host correctly configured. Then, the embedded

Web server is ready. The server provides an HTML

Web page that is stored in MCU flash memory. The

module waits for an incoming connection, transfers the

Web page, closes the connection and waits for another

client to connect. The content of this Web page is

adapted dynamically with analog values. Before

sending a segment of TCP data, it searches the transmit

buffer for special strings. If such a string is found, it is

replaced by an A/D converter value. The page has three

HTML labels that display Analog-to-Digital (A/D)

values such as CPU/air temperature and operating

voltage and a radio button pair that toggles the main

board Light Emitting Diode LED) state. One purpose

of a small Web server is to make a product ease of use.

This page is bidirectional in that it both displays device

information data and controls the board LED on or off.

The new state of the LED is sent to the Web server in a

post message. The Fig.4.Shows the overall system

design of Web Server [3].

Figure. 4. Overall System Design of Web Server

4. Future Scope

Future research is needed to improve performance.

A final consideration of this work is that there is a very

rich field involving the choice of the most suitable

RTOS for maybe critical or non critical embedded

tasks, it is necessary to make a testing the system under

an overload situation, i.e. the system is presented with

more transactions than it can handle. Also testing the

Real -time applications have the requirement to meet

task deadlines in addition to the logical correctness of

the results. This embedded ARM system can adapt to

the strict requirements of the data acquisition and

control system. In these System, both modes are

1945

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90747

efficiently carried out by real time multi tasking

operating system (RTLinux).This system can be widely

applied to chemical industry, steel making plant,

pharmaceutical industry, sugar factory and others[7].

4. References

[1] Manivannan M, Kumaresan N “Design of On-line

Interactive Data Acquisition and Control System for

Embedded Real Time Applications”, Measures OF

ICETECT 2011.

[2] M Poongothai “Design ARM Embedded Web Server

Based on DAC System”, IEEE Trans, Jan. 2011.

[3] Wang Jiannong, Wang Wei “The Common Data

Acquisition System Based On Arm9”, IEEE Trans,

March 2011

[4] “FSM Lab Mannual”.

[5] Kyasa Shobha Rani, Prof. B.Bramha reddy “Design of

On-line Interactive Data Acquisition and Control

System for Embedded Real Time

Applications”,IJRCCT,ISSN 2278-5841,Vol. 1,Issue 6,

Nov.2012.

[6] “A Survey of Real-time Operating Systems”

[7] Shahmil Merchant, Kalpen Dedhia “Performance

Comparison of RTOS”.

[8] www.fsmlabs.com.

[9] Benjamin Ip “Performance analysis of VXWorks &

RTLinux” COMS W4995-2, Languages of Embedded

Systems Department of Computer Science, Columbia

University.

1946

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90747

