

Empirical Analysis Of Open Source System For Predicting

Smelly Classes
Harshpreet Kaur Saberwal

1
 Satwinder Singh

2
 Sarabjit Kaur

3

Assistant Professor Assistant Professor, Assistant Professor,

Dept. of CSE Dept. of CSE, Dept. of CSE,

RIEIT, Railmajra. B.B.S.B.E.C, Fatehgarh Sahib. RIEIT, Railmajra.

Abstract
Software development plays an important

role in software organization for high

reliability and maintenance of the

software. One such solution is refactoring

that eases the code readability and

maintainability. Refactoring is done by

identifying bad smell areas in the code. An

empirical model of object oriented

software metrics is developed in this paper

for prediction of bad smells. A binary

statistical analysis presented here between

metrics and bad smell which shows a

significant relationship. Then a model is

generated by using bad smell

categorization. The proposed model is

validated using dataset collected from

jfreechart which shows that proposed

model predict bad smell with high

accuracy.

Keywords
Empirical Validation, Refactoring, Bad

Smells, Statistical Methods.

1. Introduction
Software reengineering covers the entire

software development process starting

from requirement to testing and then

beyond. The essence of software

reengineering is to improve or transform

existing software so that it can be

understand and controlled. In the field of

software engineering the design is the

backbone of the software system and the

software code supports it as a skeleton. If

the skeleton is defective then the new

changes may not be accommodated easily

[1]. Software reengineering is important

for recovering and reusing software assets.

To accommodate complexity and iterative

nature in software reengineering using

object oriented framework, a new concept

named, refactoring, has emerged in 1990s.

The basic idea of refactoring is to clean up

code in a controlled manner such that it

minimizes the chances of introduction of

bugs. Fowler and Beck [10] are the

originators of bad smell design problems

which help in improving the code quality

of reengineered code. Bad smell is a hint

that something has gone wrong somewhere

in the code. Identifying bad smell in code

helps to refactor the code. The author

presented the problem in an informal essay

style to guide a human developer manually

to locate bugs within a system and

provided a flat list of bad smells. But the

author did not provided any precise criteria

for evaluating code smells. The proposal is

to avoid bad smell using refactoring. The

main aim of refactoring for developing

programs is to allow modifications without

endangering external behaviour of the

code. Fowler and Beck [10] describes a

number of bad smells and referred

refactoring to get rid of them. The author

explained bad smell as a structure that

needs to be removed from code by

refactoring to improve the maintainability

of the software but failed to suggest any

criteria for making decisions regarding

how to refactor code. After that Mantyla

[12] extended the work on the empirical

study of bad smell and evaluated the

relationship between the bad smell and the

software metrics of code. Later on

Marticorena [13] studied the software

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

metrics for the detection of bad smells.

Those metrics can be used to find the bad

smell within the code. Those Metrics may

also be used to judge the quality of the

software design. Some methods were

proposed to improve the software quality

and reduce the cost of testing and

maintenance. As it is understood that the

decision to refactor the code is not an easy,

one a number of studies are carried out

regarding decision making for refactoring

and maintainability based on software

metrics. In this present work the aim is to

carry out a statistical study of relationship

between six CK metrics and bad smell.

2. Literature Review

Significant work has been done in the field

of bad smells. The review of those work

covered in this paper. There are various

categories of methods to predict bad smells

such as statistical methods. The most

common statistical methods used are

univariate and multilogistic regression.

Abreau et al. [1] has worked on the design

quality of object-oriented software systems

and evaluated the design attributes of

object oriented software systems. These

attributes can express the quality of

internal structure of code. In this work,

MOOD kit tool was applied on Object

Oriented metrics for metrics extraction

from source code (C++ code). Further the

statistical theory was applied to MOOD

metrics to evaluate the correlation between

the sample value series. Fowler and Beck

proposed metrics for removing bad smell

design problems and presented the

problem in an informal essay style to guide

a human developer manually to locate

bugs within a system. They provided a flat

list of smells. The main aim was to achieve

modifications without endangering

external behaviour. But the work has not

given any precise criteria for evaluating

code smells. Briand et al. [8] have

empirically investigated 49 metrics for

predicting faulty classes. They use

univariate and multivariate analysis to find

the individual and combined effect of

object oriented metrics and fault

proneness. Mantyla et al. [18] proposed

the taxonomy and initial empirical study of

bad smell in code. This includes two

contributions. The first is subjective

taxonomy for the categorization of bad

smell. This makes the smell more

understandable than the single flat list of

22 bad smells. Secondly, the author

provided the correlations between the

smell. These correlations help in

understanding the connection between

different smells. Marticorena extended the

taxonomy of bad smell with metrics. The

extended metrics has been used for

detecting bad smell and the metrics are

granularity, coupling, inheritance, access

and abstraction. Khomh and Penta

proposed an exploratory study of the

impact of code smell on software change

proneness. The study showed that classes

with smells are significantly more likely to

be subject of changes than other classes.
Singh et al. [20] had worked on the

effectiveness of encapsulation and object

oriented metrics to refactor code and

identify error prone classes using bad

smells. The work has been done by using

the open source Firefox system. In this

work the proper categorization of bad

smell was generated for six CK metrics

with additional metrics named public

factor and encapsulation factor. This work

has been done on C++ code by using

Columbus Wrapper Framework. The work

has established the relationship between

bad smells and metrics. Regression

analysis was used to analyse the results of

the collected data. Then the univariate and

Multinomial regression analyses were

carried out to determine the relationship

between the set of metrics. UBR and UMR

analysis were used to shortlist the metrics

on the basis of the significance of their

association. Then find out the accuracy of

the model using ROC curve.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

3. Bad Smells in code
Identify bad smells in code helps to

refactor the code. Refactoring of software

code is a very tedious problem and

applying it manually is yet more difficult.

A number of surveys have been done for

refactoring and maintainability. There is a

need of external attributes to refactor the

code for better understandability. Metrics

provide solid information regarding object

oriented properties. Research results show

the relationship between structural

attributes and external quality metrics. In

this paper we find the association between

bad smells and software metrics. In this a

statistical analysis is carried out for each

bad smell category. For this purpose we

use the Analyst4j tool.

4. Research Methodology
In this we present the descriptive statistics

for all the metrics that have considered.

4.1 Empirical Data Collection

This study makes use of jfreechart

versions. Metrics and bad smell database

was collected by use of Analyst4j tool.

Each class is smelly if there is at least one

bad smell is identified. After identifying

bad smells categorize them into Table 1.

Table1. Bad Smell Categorization

SNo. Bad Smell

Category

Bad Smells

1. Blob Class Large Objects

 Large Attributes

 Long Methods

 Large Class

 Long Parameter

2. Undocumented

Code
 No proper

Documentation

 Comments

3. Using

Inheritance
 Parallel

Inheritance

Hierarchies

 Feature Envy

4. Procedure

oriented Design
 Switch Statements

 Alternative classes

with different

interfaces

5. Complex Class Duplicate Code

 Data Class

4.2 Descriptive Analysis
Table 2 shows the mean, median, max,

min of the independent variables by using

descriptive analysis. Table 2 shows that

the standard deviation of LCOM is low in

jfreechart 1.0.0 pre1 because the value lies

between 0 and 1. DIT also has low

standard deviation in 1.0.1 version.

Table 2. Descriptive Statistics

Metrics

Jfreeechart 1.0.0 pre1

Jfreechart1.0.1

Mean Std.Dev. Min Max Mean Std.Dev Min Max

LOC 129.87 198.626 1 1940 149.03 218.799 4 2209

WMC 22.51 43.819 0 495 23.13 45.574 0 528

RFC 46.21 80.121 0 820 48.65 82.236 0 847

LCOM .33 .392 0 1 .68 6.199 0 135

CBO 8.71 9.245 0 70 9.90 9.557 0 69

DIT 1.39 1.097 0 21 1.41 .641 0 6

4.3 Method Used

Logistic regression is the commonly used

statistical method. Logistic regression is

used to predict the dependent variable

from a set of independent variable [4,8]. It

is used when outcome of the data input is

binary. We use univariate binary and

univariate multinomaial regression

analysis. Univariate logistic regression

used to find the relationship between

dependent and each independent variable.

It helps in finding the association between

the metrics and bad smell. After that we

choose the independent variables by

passing them from multicollinearity test.

Multicollinearity of metrics was removed

by Variance Inflation Factor analysis. The

limit of VIF is <10 and for tolerance it is >

0.1. After selecting the independent

variables the empirical model was built by

the logistic regression. In this two

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

dependent variables were used to find the

relation the relation between each type of

metric and different levels of bad smell.

5. Result Analysis
In this section we have analyzed the results

of our study. To start with the data

analysis, first step is to collect the data set

then apply statistical analysis. The

statistical technique used for this purpose

is univariate logistic regression. After

identifying a subset of metrics we have to

find the association between the metrics

and bad smell.

5.1 Univariate Binary Analysis
In this univariate binary regression

analysis is carried out to find the

association between bad smell and metrics.

In this we use the dependent binary

variable and different CK metrics for

finding the association between them. To

shortlist the metrics we have to check the

significance value of UBR analyses. Table

3. gives the UBR analysis showing the

association between bad smells and

metrics.

Table3. Univariate Binary Analysis

Metrics

Jfreechart 1.0.0 pre1

jfreechart1.0.1

B p-value B p-value

LOC .009 .000 0.008 .000

WMC .034 .000 0.46 .000

RFC .025 .000 0.027 .000

LCOM N/A N/A N/A N/A

CBO .249 .000 0.207 .000

DIT 1.128 .000 0.703 .000

The metrics are associated with bad smell

if the significance value p is less than 0.05.

This UBR table shows that all the classes

contain the bad smell except LCOM.

5.2 Univariate Multinomial Analysis

In univariate multinomial regression

analysis the association was done on the

basis of categories of bad smell. It can be

seen from Table 4 that DIT and CBO is

not associated with most of the categories

of the bad smell. Rests of the metrics are

helpful in predicting the bad smells in

various classes.

Table4. Univariate Multinomial

Regression Analysis

Metrics Category

jfreechart1.0.0 jfreechart1.0.1

B p-

value

B p-value

LOC

Undocumented Code -.006

-.007

.002

-.009

-.013

.000

.000

.001

.000

.000

-.004

-.006

.002

-.005

-.005

.000

.000

.008

.000

.000

Using Inheritance

Procedure Oriented

Complex Class

Blob Classes

WMC

Undocumented Code -.031

-.053

.038

-.040

-.054

.000

.000

.000

.000

.000

-.015

-.052

.033

-.021

-.023

.000

.000

.008

.000

.000

Using Inheritance

Procedure Oriented

Complex Class

Blob Classes

RFC

Undocumented Code -.011

-.015

.005

-.013

-.020

.000

.000

.003

.000

.000

-.007

-.010

.002

-.008

-.009

.000

.000

.000

.000

.000

Using Inheritance

Procedure Oriented

Complex Class

Blob Classes

LCOM

Undocumented Code -3.294

-2.729

7.470

3.781

-4.621

.000

.000

.000

.000

.000

-.001

.004

.747

-.001

-.003

.000

.000

.121

.000

.000

Using Inheritance

Procedure Oriented

Complex Class

Blob Classes

CBO

Undocumented Code -.124

-.086

-.012

-.172

-.164

.000

.000

.217

.000

.000

-.089

-.064

-.027

-.121

-.096

.001

.050

.003

.976

.920

Using Inheritance

Procedure Oriented

Complex Class

Blob Classes

DIT

Undocumented Code .693

.680

-2.722

.431

.182

.083

.000

.000

.255

.559

.860

1.557

-3.290

.405

.483

.043

.000

.000

.379

.201

Using Inheritance

Procedure Oriented

Complex Class

Blob Classes

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

Next choose the independent metrics by

removing the collinearity from the metrics

set.

Table5. Collinearity Statistics

Metrics

Before Dropping Metrics After Dropping Metrics

Tolerance VIF Tolerance VIF

Ver

1.0

Ver

1.1

Ver

1.0

Ver

1.1

Ver

1.0

Ver

1.1

Ver

1.0

Ver

1.1

LOC .062 .069 16.140 14.505 N/A N/A N/A N/A

WMC .109 .123 9.203 8.155 .227 .246 4.407 4.605

RFC .144 .151 6.967 6.626 .187 .209 5.336 4.791

LCOM .782 .964 1.279 1.038 .785 .975 1.275 1.026

CBO .306 .317 3.272 3.158 .347 .348 2.879 2.875

DIT .950 .852 1.052 1.174 .856 .856 1.051 1.168

From Table5 it can be seen that the VIF

value of LOC is greater than 10. So we

have to exclude LOC because of high VIF.

It is not helpful in predicting the bad smell.

After excluding this we find out the

likelihood ratio of the rest of the metrics.

This likelihood ratio shows that the model

is significant at 95% of confidence.

Table6. Model Fitness Test

 jfreechart1.0.0 pre1 Jfreechart 1.0.1

Likelihood

Ratio
.000 .000

6. Conclusion
This paper proposes a method that

categorizes similar bad smells. This helps

in finding the association between the

metrics and bad smells. An empirical study

is carried out to find the association

between the bad smells and the software

metrics. In this paper we design a binary

metrics model and then multivariate model

to check the role of metrics in identifying

the bad smell. We also find out the

likelihood ratio to check the fitness of the

model. This paper has described ongoing

research on bad smells. This study was

carried out on the open source system and

the future work will extend to identify

association between different projects

depending on the language

7. References
[1] Abreau, F.B., M. Goulao, R. Esteves,

Towards the design quality evaluation of

object oriented software systems, Proc. 5
th

Int. Conf. on Software Quality, 1995.

[2]Abreau, F.B., Melo, Evaluating the

impact of object oriented design on

software quality, Proc. 3
rd

 International

Software mterics Symposium (Metrics96),

IEEE, Berlin, Germany, March, 1996.

[3] Bansiya J, David CG, A hierarchical

model for object oriented design quality,

IEEE Transactions on software

engineering, 2002, 28, pp, 4-17.

[4] Basili, V.L., Briand, L., Melo, W.L., A

validation of object oriented metrics as

quality indicators. IEEE Transations on

software engineering, 1996, 22(10), pp.

751-761.

[5] Beck. K, Beedle M, van Bennekum A,

Cockburn A, Cunninghum W, Fowler M,

Grenning J et al. Manifesto for agile

software development 2001.

[6] Briand, L., Arisholm, E., Counsell S.,

Houdek, F. and Thevenod-Fosse, p.,

Empirical Studies of OO Artifacts,

Methods and Processes: State of Art and

Future Direction, Empirical Software

Engineering, 1999,4(4),387-404.

[7] Bieman, J., Kang, B.K., Measuring

Design Level Cohesion, IEEE

Transactions on Software Engineering,

1998,24(2), 111-124.

[8] Briand, L.c., Wuest, J., Daly, J.W.,

Porter, D.V., Exploring the relationship

between design measures and software

quality in OO systems, Journal of Systems

and Software 2000, 5(3), 245-273.

[9] Cartwright, M., Shepperd, M., An

empirical investigation of an object-

oriented software system. IEEE

transactions on Software Engineering,

2000, 26(7), 786-796.

[10] Chidamber S.R., Kermerer C.F.,

Towards a metrics suite for object oriented

design, Proceedings of the Conference on

Object-Oriented Programming: Systems,

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

Languages and Applications, 1991, 197-

121.

[11] Chidamber, S.R., Kemerer, C.F., A

Metric Suite for Object-Oriented Design,

IEEE Transactions on Software

Engineering, June 1994, 20(6), 476-493.

[12] Coleman D, Ash D, Lowther B,

Oman PW, Using metrics to evaluate

software system maintainability, IEEE

Computing Practices, 1994, 27(8), 44-49.

[13] Emam, K.E., Melo, walcelio,

Machado, Javam, The prediction of faulty

classes using object oriented design

metrics, The Journal of Systems and

Software, 2001,56,63-75.

[14] F. Simon, F, Steinbruckner, F.,

Lewerentz, C., Metrics based refacoring.

In Proceedings of the fifth European

Conference on Software Maintenance and

Reengineering, 2001.pp 30.

[15] Fawcett, T., ROC graphs: Notes and

practical considerations for researchers

Machine Learning, 2004,pp,31.

[16]Fowler, Martin, Refactoring:

Improving the design of existing code.

Addision-Wisely,2000.

[17]Grady RB, Successfully applying

software metrics. IEEEComputer Vol 27,

No. 9, pp. 18-25.

[18] Mika Mäntylä, Jari Vanhanen, and

Casper Lassenius. 2003. A taxonomy and

an initial empirical study of bad smells in

code. In: Proceedings of the 19th

International Conference on Software

Maintenance (ICSM 2003). Amsterdam,

The Netherlands. 22-26 September 2003,

pages 381-384.

 [19] Mika Mantyala. Bad Smells in

Software- a Taxonomy and an empirical

Study. PhD Thesis, Helsinki University of

Technology, 2003.

[20]Satwinder Singh, K.S. Kahlon,

Towards effectiveness of encapsulation

and object-oriented metrics to refactor

code and identify error prone classes using

bad smells, Volume 36 number 5 2011.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

