International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 1ssue 3, May - 2012

Engineering Multi-Tenant Software-as-a-Service Systems

E.Geetha Rani#1, CH.Suguna Latha*2, D.Anusha#3, M.Satya Sukumar*4 T.Swath##5

#1Infornation Technology, Gudlavalleru Engineering College, Gudlavalleru, jntuk, A.P, INDIA

#3Information Technology.PVPSIT,Vijayawada, jntuk, A.P, INDIA

#5Information Technology.Gudlavalleru Engineering College, Gudlavalleru, jntuk, A.P, INDIA

*2Infornation Technology, Gudlavalleru Engineering College, Gudlavalleru, jntuk, A.P, INDIA

*4Infornation Technology,PPDCET,Surampalli(V),jntuk,A.P,INDIA

ABSTRACT

Increasingly, Software-as-a-Service (SaaS) is
becoming a dominant mechanism for the
consumption of software by end users. From a
vendor’s perspective, the benefits of SaaS arise from
leveraging economies of scale, by serving a large
number of customers (“tenants”) through a shared
instance of a centrally hosted software service.
Consequently, a SaaS provider would, in general, try
to drive commonality amongst the requirements of
different tenants, and at best, offer a fixed set of
customization options. However, many tenants would
also come with custom requirements, which may be a
pre-requisite for them to adopt the SaaS system.
These requirements should then be addressed by
evolving the SaaS system in a controlled manner,
while still supporting the needs of existing tenants.
This need to balance tenant variability and
commonality, and to optimize on development and
testing effort, can make the evolution of multi-tenant
SaaS systems an interesting engineering challenge;
this has strong economic undertones as well, given
the “pay-per-use” subscription model of SaaS, and
the cost of incremental development and maintenance
to cater to new tenant needs. In this paper, we outline
a set of research issues in the design, testing and
maintenance of multi-tenant SaaS systems, and
highlight some of the interesting optimization
questions that arise in the process. Presenting specific
technical solutions is beyond the scope of this paper —
instead, our goal is to help shape a research agenda
for multi-tenant SaaS that can provide stimulus for

further investigation into this area by the software
and service engineering research community, and can
help advance methodological guidance and tool
support for SaaS vendors.

Keywords :

Software-as-a-Service, cloud computing, multi-
tenancy, testing, semantics, refinement

1. INTRODUCTION

In recent years, the trend towards “Everything-as-a-
Service” (XaaS) as envisioned in Utility Computing’s
pay-per-use model, has been rapidly gaining ground
in the Information and Communication Technology
(ICT) world. Companies are increasingly adopting
this new paradigm where they do not wish to commit
resources for engineering computing infra-structure.
Instead, they acquire these resources as and when
they need them as services. Cloud computing, which
has emerged as the run-time platform for realizing
this vision, may be visualized as a stack of possible
service types, ranging from infrastructure-as-a-
service (laaS) at the very base, to platform-as-a-
service (PaaS)s, to finally, Software-as-a-Service or
SaaS — the main focus of this paper. Informally, SaaS
may be described as software deployed as a hosted
service and accessed over the internet without the
need for users to deploy and maintain additional on-
premise IT infrastructure. From a SaaS vendor’s
perspective, the benefits of SaaS arise from
leveraging economies of scale, by serving a large
number of customers (“multiple tenants”) through a
shared, centrally-hosted software service. This

www.ijert.org

translates to lower subscription fees for individual
tenants, thereby encouraging entirely new market
segments to utilize the benefits of software services —
for example, Small and Medium Enterprises (SMEs)
who have traditionally been unable to afford steep
software license costs, are able to factor in SaaS
subscriptions as part of their operational expenses,
and thereby give their business the benefit of IT
services. For these reasons, SaaS has seen very
significant growth over the last few years, and the
market outlook for the future continues to be bright.
According to a recent IDC report [23], the SaaS
market reached $13.1B in revenue in 2009, while the
on-premise market shrunk by $7B. The SaaS market
is forecasted to reach $40.5B by 2014, representing a
compound annual growth rate (CAGR) of 25.3%. By
2014, about 34% of all new business software
purchases will be consumed via SaaS [23]. Other
industry analysts also share this optimism around
Cloud Computing/SaaS e.g. Gartner estimates that
over the course of the next 5 years, enterprises will
cumulatively spend $112B on SaaS, Paas and laaS
[24]. The business benefits of SaaS notwithstanding,
supporting true multi-tenancy in a SaaS system can
be very challenging. By true multi-tenancy, we mean
a SaaS instance that not only supports the common
needs of several tenants, but also the custom
requirements of individual tenants to the extent
possible. In the traditional mode of on-premise
software delivery, or even in the Application Service
Provider (ASP) model, each tenant would have a
dedicated instance of the base application customized
to its needs. However, when several tenants have to
share the same application instance in a multi-tenant
SaasS, how to handle variations in tenant require ments
becomes an interesting question. Clearly, supporting
such variations increases the overhead on the SaaS
vendor. Also, allowing too much variability can
defeat the very purpose of sharing, and make system
maintenance very expensive. On the other hand,
allowing too little variability may discourage tenants
from subscribing to a SaaS in the first place - tenants
would be unwilling to compromise too much in terms
of changing their business processes to adapt to what
the SaaS vendor has to offer. This will be particularly
true for many small and medium-sized vendors, who
would be less capable to dictate the terms of business
engagement with their customers. In fact, industry
surveys [25] indicate that the inability to customize
SaaS applications to suit their needs is the most
significant challenge that customers face with the
SaaS offerings they use. In the coming years, this has
the danger of slowing down the growth of SaaS
beyond those domains where there is little or no need
for tenant-specific variations. Such domains may be
few in spite of the general move towards industry

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 1ssue 3, May - 2012

standards.We believe that for the SaaS paradigm to
truly meet its potential, vendors will need to move
away from building rigid “one-size-fits-all” systems,
or those that offer a fixed set of available
customization options from which tenants must
select. Instead, vendors will have to design SaaS
systems in a way that allows the applications to
evolve with time to cater to the custom requirements
of newer tenants looking to onboard the system.
While doing so, vendors should not, of course, lose
sight of the end-goal of a shared SaaS — that the
commonality amongst tenants remain sufficiently
high for a single application instance to be justifiable
and viable. Thus multi-tenant SaaS development
must involve maintaining this balance between tenant
commonality and variability on an ongoing basis,
leveraging the benefits of commonality wherever
possible, and suitably adapting the
design/development/testing/on-boarding process to
address the requirements of variability. At its very
core, SaaS is a economic model for software
consumption, hence much of these activities would
have to be grounded on the basis of financial
reasoning that can benefit the vendor as well as the
tenants. In this paper, we seek to outline a multi-
tenant SaaS engineering approach that is motivated
by this line of thinking. In particular, we consider the
topics of: designing multi-tenant SaaS systems in a
way that facilitates reasoning about tenant
commonality and variability (Section 4); testing such
systems efficiently to avoid redundancies due to
shared behaviour while still exercising all points of
difference (Section 5); and re-factoring SaaS systems
to ease maintenance (Section 6). Elaborating on these
issues, we naturally find a set of optimization
questions rooted in the SaaS economic model, which
can guide decision-making — for example, which set
of tenants to onboard, or which subset of services to
retire, so that the vendor profitability is maximized,
or impact on tenants is minimized. The overall SaaS
engineering approach that we outline may be realized
through design and analysis toolkits that vendors may
use to methodically design, validate, refine and
evolve multi-tenant SaaS systems. However, going
into specific realization aspects is beyond the scope
of this paper — we focus, instead, on the research
issues involved and outline possible solution
approaches with the hope that this will provide an
agenda for further investigation.

2. Related Work

While there is a lot of interest in SaaS in general, we
believe that the challenges that arise due to multi-
tenancy have not been adequately explored from a
software engineering perspective. Much of the
existing research on multi-tenant SaaS have focused

www.ijert.org

on shared data architecture and security manage ment
[5, 7, 1, 15], and middleware extensions to address
the well-founded concerns due to
data/security/isolation. The work of [8] develops a
mu lti-tenant placement model which decides the best
server where a new tenant should be accommodated.
The placement mainly considers the hardware
resources including CPU and storage usage. In
principle, a new tenant will be placed on the server
with minimum remaining residual resource left that
meets the resource requirement of the new tenant.
There have also been studies on service performance
issues in multi-tenant Saa$S [9].

In contrast, there has been relatively little research so
far on the impact tenant variability may have on the
functionality and evolution of a SaaS system over its
lifecycle. This is not surprising given that SaaS is a
relatively recent phenomenon, and hence the initial
focus is bound to be on issues that are related directly
to its feasibility (such as security or performance).
However, the fact that a SaaS system needs to
functionally cater to multiple tenants is now
increasingly understood, leading to research on how
to model variability in a SaaS, and how to make a
SaaS system more customizable. Models and
techniques successfully employed in software
product line engineering [14] have been applied in
multi-tenant systems to manage configuration and
customization of service variants. In particular, [11]
extends variability modeling [2], which provides
information for a tenant to customize the SaaS
application and guides the SaaS provider for service
deployment. The work of [3] discusses some
potential challenges in implementation and
maintenance of multi-tenant systems. It presents an
architectural approach which tries to separate the
mu lti-tenant configuration and underlying
implementation as much as possible, by adopting the
3-tier architecture (authentication, configuration, and
database) in the traditional single-tenant web
application. Along the same lines, experiences in
modifying industrial-scale single-tenant software
systems to multi-tenant software have been reported
in [4]. This involves extending user-authentication
mechanisms, introducing tenant-specific software
configuration and adding an application layer to
extract tenant-specific views from the shared
database. A recent paper [13] also studies tenant
specific customizations in a single software instance,
multiple tenant setup.In the software product lines
community, feature diagrams have been used to
capture the similarities and differences between
products in a software product family (e.g. see [33]
and the references therein). Testing of software
product lines described as feature diagrams has been
studied in [34], where the goal of test generation is

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 1ssue 3, May - 2012

given as the presence/absence of selected features. In
comparison, for multi-tenant SaaS systems, we feel it
is important to have a holistic view of the
commonality/differences across tenants so that it be
exploited to sharing of parts of the test suite across
tenants.

3.Motivation for this Paper

By and large, the emphasis of the above cited work
has been on how SaaS architects may model
customization/configuration options through
variation points, and make them available to tenants
who wish to on-board the SaaS system, so that each
tenant may individually decide which set of
customization options offered by the vendor to select.
However, while a vendor may offer a fixed set of
customization options based on its understanding of
the domain, we expect that a SaaS — like all other
software in the past — will need to evolve based on
newer/differentiated capabilities demanded by the
users —specially since the user base, spanning across
multiple tenants, will be large and diverse. Business
imperatives will demand this evolution. One may
argue that tenant-specific changes (beyond vendor-
offered customizations) go against the very objective
of sharing, and that such demands, when they have to
be met, should be handled through separate
customized instances for individual tenants.
However, there is an entire spectrum to be traversed
between fully common, shared behavior, to
completely different, customized behavior, and we
strongly feel that the moot question i not whether
tenant-specific changes should be considered, but to
what extent they may be accommodated within a
single instance, while still retaining the benefits of
sharing. From the vendor’s perspective, the evolution
of a SaaS system due to functional variability
amongst tenants raises many interesting questions:
how different is a new service variant being
requested from the ones that we currently offer? Is it
a refinement, or an elaboration of what we have, or
will it require significant new development? What
impact will it have on the homogeneity of the overall
system if we accommodate it? Is the return-on-
investment justified? How quickly can we test the
changes? At what point does the maintenance
overhead of tenant-specific changes start outweighing
the benefits due to shared behavior? A service variant
we were supporting seems to be having diminishing
utility — how do we minimize the impact of retiring
it?....and many more. The goal of this paper is to
help chart an agenda from the existing work on
vendor-driven customizability via variability
modeling, to a more tenant-driven evolution of a
SaaS system, and the engineering challenges
(exemplified by the questions above) that the vendor

www.ijert.org

has to address to accommodate this evolution. In the
rest of the paper, we attempt to elaborate on this
agenda.

4.0verview

To motivate the multi-tenant SaaS engineering
approach that we outline in subsequent sections, let
us consider the following scenario — two major stock
exchanges make an agreement to offer joint online
trading services for a range of stock transactions (this
is a realistic scenario as we have seen from recent
news on the Singapore and Australian Stock
Exchange [30]). Let us suppose, this has to be made
operational very soon to exploit a favorable economic
climate.

. Several existing services offered by both the
stock exchanges have functional similarities, along
with some variations. These services need to be
identified and grouped together/merged in the joint
trading systemto be developed.

. Requirements for several new business
services have been elicited with a high number of
variants to meet the needs of different financial
institutions and grades of investors. There is a need to
judiciously invest in new development, so that it
generates most value for the ecosystem (stock
exchange, customers), while giving priority to the
services in most common need.

. As development commences, testing
scenarios seemto escalate when considering how
each possible tenant is likely to exercise the system.
Given the short development cycle, it is critical to
reduce testing overhead whenever possible, while

still retaining a degree of confidence about the
coverage of tenant behavior.

. Post development and testing, the joint
trading services are offered and they become very
successful. New tenants continue to come on-board
and the service and variant portfolio is
opportunistically expanded to cater to their needs. At
one point, maintenance overhead becomes a
bottleneck — somehow the system needs to be re-
factored to reduce tenant variability and keep things
tractable. These are all realistic scenarios that are
likely to occur when a multi-tenant SaaS system —
one that tries to maximize tenant commonality while
accepting some of their variabilities - is developed
and deployed. These scenarios suggest the following
topics would be relevant for engineering mu lti-tenant
SaaS:

. A (Semantic) Model for SaaS Systems: This
will involve modeling the SaaS services and
variations, and representing tenant requirements so
that they may be mapped to the SaaS system. The

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 1ssue 3, May - 2012

model should support semantic reasoning, so that
similarities and differences between services and
tenant requirements may be analy zed to fine-tune the
service model, estimate development costs for tenant
requirements and guide tenant on-boarding.

o Saas Testing: Tenants will share many
common features, but may also need capabilities that
apply only to a subset of other tenants. There is a
need to devise efficient test representation and test
case generation techniques, so that the testing activity
can focus on exercising variations in tenant behavior,
and avoid redundancies in testing the common
behavior shared across a set of tenants.

. Re-Factoring SaaS Systems: A multi-tenant
SaaS system may be initiated from customized single
tenant instances, whose commonalities need to be
merged and variation points accounted for. It will
continue to evolve as it accommodates the
requirements of new tenants on-boarding the system.
Eventually, it may again need to be re-factored —
certain service variants may not have a high utility
and the vendor may want to retire those while
minimally impacting subscribing tenants, while the
variability amongst certain sets of tenants may justify
separate SaaS instances for them. While the focus of
the above discussions has been on functional
similarities (or variabilities) between tenants and its
implications on the SaaS development cycle, there
may also be differences between non-functional
requirements (NFRs) of tenants. NFRs may be
captured in the Service Level Agreements (SLAS)
between the tenants and the SaaS provider, and they
will constitute an important element of a multi-tenant
SaaS analysis and engineering framework. However,
given the orthogonal nature of functional and non-
functional requirements and how they may be
realized, we restrict ourselves to the functional space
in this paper.

5.A Model for Multi-Tenant SaaS

A multi-tenant SaaS system has to be carefully
designed to handle the variability that can arise due to
the differing needs of tenants. At an abstract level, a
SaaS system may be considered as a collection of
services, where each service in turn, consists of a
collection of operations that can be invoked by
clients. The functionality desired by different tenants
out of a service or operation may differ, thereby
necessitating support for variants of these entities. As
the existing literature shows [11], concepts from
product-line engineering may be adopted to define
variation points to which different variants may be
linked, and the variability model may also be used to
guide SaaS customization. Moreover, the packaging
and deployment of the SaaS may be guided through a
set of multi-tenancy patterns that help distinguish

www.ijert.org

between components that are shared between all
tenants or are specific to some tenants [12].
Technically, these constructs provide the basic
foundation for supporting variability within a multi-
tenant SaaS application architecture. However, to
help multi-tenant SaaS systems evolve in a controlled
manner, what is needed is not only a way to record
different variants, but also to be able to analyze their
degree of variability (or conversely, similarity). For
example, to onboard a new tenant, its requirements
from the SaaS system needs to be mapped onto the
set of available services and operations, so that the
vendor can determine the gaps that need to be filled
through new variants. If a new variant is very similar
to an exsting service or operation, then the
development effort will be relatively small, and the
homogeneity of the system will not be impacted too
much. On the other hand, if the tenant requires a very
different/new type of service or operation, then it
may imply significant development overhead, which
has to be reviewed not only in light of the potential
financial benefits, but also the heterogeneity it
introduces and its long-term maintenance
implications. In addition to updating a SaaS systemto
onboard a new tenant, the vendor may also wish to
re-factor the system periodically to improve its
maintainability (we discuss this in Section 6) — this
would also need an analysis of similarities between
different services/variants, so that the right decisions
may be taken with respect to changes that have to be
made to the underlying design.

For these reasons, it would be helpful to enrich the
existing variation-oriented modeling of multi-tenant
SaaS systems with constructs that enable
representation of service semantics. This may be
done, for example, using a Design by Contract
approach [31], where the semantics of a design entity
like a service or operation is captured through the use
of pre-conditions, effects/post-conditions, invariants
etc. In the SOA world, such a representation has
already been explored by the semantic web
community to facilitate service discovery, matching
or composition, leading to formalisms like OWL-S
[32]. We believe that a similar approach can also be
taken to establish the semantic underpinnings of a
mu lti-tenant SaaS solution. On top of this, one may
define different notions of refinement to understand
relationships between services/variants and the ease
with which a new variant may be created from
existing ones. For example, a variant that only needs
weakening of an existing pre-condition may be easier
to incorporate than one that introduces a significant
new post-condition. Similarly, the addition of a
variant of an existing service operation may cause
less impact than the definition of a new operation,
which is turn, may be deemed to have less overhead

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 1ssue 3, May - 2012

than having to define an entirely new service for a
tenant. Such an approach would help the vendor
estimate the cost of onboarding a new tenant, both in
terms of the associated development effort, as well as
the degree of heterogeneity that is introduces into the
model. The vendor may further define thresholds for
this heterogeneity (or conversely, homogeneity or
commonality) at different design levels to control and
scope the evolution of a multi-tenant SaaS system.
Given such a semantic model for SaaS, the
onboarding of tenants poses interesting optimization
problems. The requirements of a tenant may be
represented in terms of services and operations, and
we may expect these requirements to be a mix of
mandatory (must-have) and optional (good-to-have),
which provides a basis for negotiation with the SaaS
vendor. Given a tenant’s requirements profile, the
vendor would like to identify the optimal subset of
requirements it should support, so that its net profit is
maximized while leading to the best commonality in
the resultant system. The vendor’s profit would be
the difference between the expected revenue from the
services/operations based on the tenant’s anticipated
usage profile, and the cost of additional development,
which in turn will depend on the degree to which
existing services/operations may be re-used e.g.
through refinement. The resultant commonality of the
system would reflect the extent to which the
services/operations of the updated system are shared
between tenants, and the degree of similarity between
the variants of a service/operation. Given a set of
such tenants to be considered for the next cycle of
evolution of the SaaS system, the vendor would be
interested to identify the subset of tenants and
requirements to support, so that the above
profit/‘commonality criteria are optimized.A
variation-oriented semantic model for multi-tenant
SaaS can thus provide a sound basis for a controlled
evolution of the system.

6.Testing Multi-Tenant SaaS systems

There are (at least) two interesting questions to
consider in the area of testing multi-tenant SaaS
systems that evolve to accommodate tenant
variability: First, when a new tenant is onboarded,
how do we test that existing tenants are not impacted
by the changes introduced? Second, how do we
efficiently test that the SaaS system meets the needs
of the different tenants that have been onboarded? In
the approach outlined in the preceding section, any
new functional capability required by a tenant that is
being onboarded, is handled cleanly by defining a
new service/operation or its variant. We do not
update any existing operation used by current tenants.
This ensures that the changes made for the new
tenant are isolated, and do not impact the functioning

www.ijert.org

of the existing tenants. The first question is thus not
relevant to our approach, although it will be a core
concern for methods that try to overload existing
operations to behave differently for different tenants.
We do not recommend this since it is likely to result
in code that is very difficult to maintain. The second
question, however, is very relevant. Given the large
degree of commonality that is likely to exist amongst
tenants, significant testing resources may be
consumed if every tenant has to be fully tested across
all applicable scenarios. Rather, we may wish to test
only the changes introduced by a tenant. One may
argue, of course, that each tenant is different in that it
would have its own data set. However, even if tenants
are to be comprehensively tested individually, a
testing strategy should be devised that exploits
similarities amongst tenants to let testers step through
the scenarios in a systematic manner. Below, we
elaborate on the issues related to multi-tenant SaaS
testing, based on the semantic model suggested in the
preceding section. We assume a test case to be
represented as a sequence of service operation
invocations (or it may be relaxed into a partial order).
The first issue we consider is test case generation,
particularly test cases which do not exist in the
current test-suite, but which should be tested once the
new tenant(s) are on-boarded. This problem is similar
in flavor to the test-suite augmentation problem —
where tests are generated to stress program changes,
namely executing the changes and propagating the
effect of the changes to the program output. The
general problem of test-suite augmentation may be
addressed via two steps (for example, see [16]). In
the first step, a control dependency analysis is done
to find a test input to reach/execute the change. Then,
in the second step, we modify the path of the change
reaching test input to ensure that the program outputs
are different with or without the change. One key
issue here is to avoid infeasible paths, and for this
reason symbolic execution (and path condition
calculation) is essential. For multi-tenant SaaS
systems, the test-suite augmentation problem will be
visualized at a higher level, with the changes defined
at operation level. Consequently the individual steps
of the analysis (for finding the new tests) will also
need to be changed. For reaching the change, we may
want to exploit pre-conditions of the operations,
instead of performing a fine-grained control
dependency analysis. Finally, for propagating the
effect of the executed changes, we can analyze the
operation post-conditions (along with suitable control
flow restrictions) to find a suitable test (in the form of
a partial order of operation invocations). Since pre-
and post-condition analysis will be central to this
method, we envision that symbolic execution will
play an important role in the proposed methods. The

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 1ssue 3, May - 2012

approach will extend contract-based testing of web
services [26, 27]. The second issue relevant to testing
multi-tenant SaaS systems is devising a testing
strategy that exploits the similarity amongst tenants
and structures the test suite accordingly. For this
purpose we propose the notion of a Test-tree. The
root node of a test-tree captures the set of test cases
which need to be tested for all the tenants. Each
intermediate node of the tree will capture a set of test
cases which need to be tested for a subset of tenants.
Thus, a partitioning of the tenant set is given by the
root-to-leaf paths in the test-tree. To further illustrate
the notion of test-tree, we may consider a schematic
example.

Tenants {t,. ts}

Tenant {t;} Tenants {t;. t3}

Fig. 1: A Test Tree for Multi-Tenant SaaS

In this example, we have five tenants {t1, t2, t3, t4,
t5}. For comprehensive testing, tenant t1’s behavior
needs to be tested against (200 +100 +10) = 310 test
cases. Of these, 10 test cases are unique to t1, hence
the SaaS system must be tested on these prior to
onboarding of t1. Out of the remaining, 100 test cases
are shared with t2 and t3, and 200 test case are shared
with all other tenants, so depending on the degree to
which these test cases have already been exercised on
existing tenants, testers may decide whether to test
for a specific case or not. Furthermore, the root-to-
leaf paths in the test-tree induce a partitioning of the
tenantset — namely {{t1}, {t2, t3}, {t4, t5}}. We feel
that the notion of a test-tree is a powerful one, for
efficient and systematic testing of multi-tenant SaaS
systems. In a broad sense, constructing the test-tree
also amounts to a specification of the behavior of
tenants in a multi-tenant SaaS system — outlining the
similarities and differences across the tenants’ usage
of the SaaS system. Given such a notion of a test-tree
fora multi-tenant SaaS system, we need to study how
the tree is modified as new tenants are on-boarded. In
this respect, we can be guided by some of the works
on software change-impact analysis. Mature tools
like Chianti [17] exist for change impact analysis.

www.ijert.org

Given two program versions, these tools identify the
atomic changes (across the two versions) and then
find out the tests whose execution is affected by the
changes. Such tools are very useful for program
understanding, debugging and testing — but from a
general software engineering context. For multi-
tenant SaaS systems, the atomic changes can be
defined more coarsely, possibly in terms of new
operations or variants thereof. We can then adapt the
works on change impact analysis to find which tests
from the existing test suite may be affected, and test-
tree transformations have to be defined accordingly.

7. Re-Factoring Multi-Tenant SaaS Systems
There are situations where a vendor may wish to
refine a SaaS design, either to improve its
maintainability, or to provide better support for
mu lti-tenancy. In particular, we envision the need for
three re-factoring techniques that we term merging,
splitting and pruning. The goal of merging is to help
bootstrap a multi-tenant SaaS design from existing
single-tenant ones. Splitting may be used to generate
smaller SaaS systems to reduce variability and
improve maintenance. Pruning may be used to retire
service entities that are of low utility, in a
controlled manner to manage impact. We introduce
them in the following.

Merging: The merging technique will be useful in
moving legacy service systems to the cloud. Imagine
a vendor of a SaaS system or an on-premise software
product with many instances that have been
individually customized and deployed for different
customers. The vendor may now want to offer this
software on the cloud, and have a single instance
shared across the customers, to leverage the benefits
of multi-tenancy. From a design perspective, this
means that the commonalities and differences across
the various customized instances need to be identified
and accounted for within a common design — this is
where merging comes in. The technique assumes that
the individual instances have a SOA-based design in
terms of services and operations, and that the
semantics of these entities (pre-conditions/effects) is
known, or may be discovered by mining the legacy
code. Given this, merging will analyze the
specification of the different instances to detect
similarities in services/operations. Different grades of
similarity (from strict to lenient notions) may be used
to come up with a merged design that meaningfully
groups together similar entities under variation
points. The literature on model differencing/merging
[17, 18, 19] and semantic web matching [20, 21] will
be relevant here.

Splitting: This is the dual of the merging operation.
There may be a number reasons why a service
provider may want to split a large multi-tenant SaaS

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 1ssue 3, May - 2012

system into smaller multi-tenant systems (each
system consisting of a subset of services and
operation variants present in the original system). For
example, it may be due to ease of maintenance. As
more and more tenants onboard a SaaS, the
service/operation/variant set may keep on increasing.
As aresult, the software may get bloated, and a direct
business consequence of this for the provider would
be higher maintenance costs. Secondly, a group of
tenants may exhibit similar usage requirements. In
such cases, it may make sense to support them out of
a separate (smaller) SaaS instance, and maybe charge
a higher price for those combinations of services and
operations. However, splitting a large multi-tenant
SaaS system into multiple smaller ones supporting
subsets of tenants, may also lead to some features
being replicated across the different instances, and
this may lead to new running costs. There is thus a
trade-off to be considered. A relevant optimization
problem is, given a multi-tenant SaaS system S,
divide its tenant set T into K (>=2) non-overlapping
subsets generating K multi-tenant systems (each
system containing all the services/operations/variants
needed by its tenmants), in a way that leads to
maximization of the profit for the SaaS vendor and
also leads to the best commonality in the resulting
systems.

Pruning: Pruning refers to changes made to a SaaS
design by retiring entities (services, operations) that
the vendor perceives to be of low utility. This may be
based on financial motives. For example, the utility
value for a service operation (or a specific variant)
may be computed as the ratio of revenue generated
from this operation and its running costs — where the
revenue is computed over all tenants who have
subscribed to the operation, while running costs refer
to the cost the provider has to bear to maintain the
operation in question (such as cost of associated
infra-structure, third party services and so on). We
can similarly lift the notion of utility to the level of a
service by averaging over all the service operations.
When the utility of a service, operation or variant
falls below a threshold, the SaaS vendor may decide
to retire i.e. withdraw those entities, and thereby save
on the running costs. We term this as pruning the
SaasS design.

However, retiring a service or operation will impact
those tenants who have subscribed to it. If an entire
service is retired, the subscribing tenants will lose the
associated functionality, and if this represents one of
their mandatory requirements, they are likely to leave
the vendor, causing revenue loss to the latter. A more
controlled way of pruning the SaaS system may be by
retiring selected operation variants of low utility,
with the plan of offering other variants of these

www.ijert.org

operations (as substitutes) to the subscribing tenants.
Our assumption here is that as long as the vendor is
able to preserve a tenant’s control flow through the
SaaS at the level of the operations invoked, it may
still be acceptable to the tenant if certain operation
variants are replaced by other suitable variants. Of
course, tenants will also need to know the cost
implications of this transfer — for example, if the new
variants are much more expensive than existing ones
- hence the vendor’s goal would be to offer those
alternative to a tenant that do not result in excessive
additional cost. On the other hand, if the provider
cannot preserve a tenant’s control flow in terms of
the operations it needs to invoke, then the tenant may
leave the provider. Given this context, the pruning
problem may be formulated in terms of determining
the subset Sk of low-utility operation variants that
may be removed from the SaaS system, such that the
number of tenants who may leave is <L, the average
transfer costs of remaining tenants is <Q, and the
provider’s profit is >P, where L, Q and P are suitable
thresholds for the respective measures that may be
defined by the user/vendor.

8.Summary

Multi-tenancy offers a very attractive proposition to
vendors and customers alike, to leverage the
economies of scale by sharing a common application
instance across many tenants. There is a growing
need however, to make multi-tenant SaaS more
flexible so that some of the custom requirements of
individual tenants can be met even within the shared
application instance. Existing approaches try to
address this by considering how a vendor may offer a
(fixed) set of customization options to tenants, which
they can choose from while onboarding. In this
paper, we have argued for a more tenant-driven
evolution of a SaaS, where a vendor can
accommodate changes to a SaaS to meet tenant
needs, within reasonable limits. We have then
discussed a number of software engineering issues
that are relevant to such an evolution, and some of
the optimization problems that arise. Specifically, we
have considered semantic modeling of multi-tenant
SaaS systems, onboarding of tenants with custom
needs, efficient testing for multiple tenants with a
mix of common/custom behavior, and re-factoring
techniques to increase the maintainability and
economic value of multi-tenant SaaS systems. We are
currently working on formalizing many of the
concepts introduced in this paper. This will lay the
foundation for a multi-tenant SaaS toolkit with
capability patterns for semantic modeling, tenant
onboarding, testing and re-factoring, that vendor
teams may use to develop, evolve and maintain
mu lti-tenant systems.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 1ssue 3, May - 2012

9. REFERENCES.:

> S. Aulbach, T. Grust, D. Jacobs, A. Kemper
and J. Rittinger. Multi-tenant Databases for Software
as a Service:Schema- Mapping Techniques. In
SIGMOD, pp 1195-1206, 2008.

> J. Bayer, S. Gerard, O. Haugen et al.
Consolidated Product Line Variability Modeling.
Software Product Lines.

> C. Bezemer and A. Zaidman. Mu lti-Tenant
SaaS Applications: Maintenance Dream or
Nightmare? In Proceedings of the 4th Internaitonal
Joint ERCIM/IWPSE Sy mposium on Software
Evolution (IWPSE-EVOL), 2010

> C. Bezemer, A. Zaidman, B. Platzbeecker et
al. Enabling Multi-tenancy: An Industrial Experience
Report. In ICSM.

> F. Chong, G. Carraro, and R. Wolter. Multi-
Tenant Data Architecture. MSDN Library, Microsoft
Corporation, 2006.

> K. Czarnecki, M. Antkiewiczand C. Kim.
Multi-level Customization in Application
Engineering. Communications of the ACM, 49(12):
65, 2006.

> C. Guo et al. A Framework for Native
Multi-Tenancy Application Development and
Management. 9th IEEE Intl. Conf. on E-Commerce
Technology and 4th 1EEE Intl. Conference on
Enterprise Computing, E-Commerce and E-Services
(CEC-EEE), 2007.

> T. Kwok and A. Mohindra. Resource
Calculations with Constraints and Placement of
Tenants and Instances for Multi-Tenant SaaS
Applications. In International Conference on Service
Oriented Computing (ICSOC), 2008.

> X. Li, T. Liu, Y. Liand Y. Chen. SPIN:
Service Performance Isolation Infrastructure in
Multi-Tenancy Environment. In Internatonal
Conference on Service-Oriented Computing
(ICSOC), pp 649-663, 2008.

> R. Mietzner and F. Leymann. Generation of
BPEL Customization Processes for SaaS applications
from Variability Descriptors. In IEEE International
Conference on Services Computing, volume 2, pp
359-366, |IEEE Computer Society, 2008.

> R. Mietzner, A. Metzger, F. Leymann and
K. Pohl. Variability Modeling to Support
Customization and Dep loyment on Multi-Tenant-
Aware Software as a Service Applications. In ICSE
Workshop on Principles of Engineering Service
Oriented Systems (PESOS), 2009.

> R. Mietzner, F. Leymann and M. P.
Papazoglou. Defining Composite Configurable SaaS
Application Packages Using SCA, Variability
Descriptors and Multi-Tenancy Patterns. 3rd Intl.
Conference on Internet and Web Applications and
Services, pp 156-161, 2008.

www.ijert.org 8

> Nitu. Configurability in SaaS (software as a
service) Applications. In Proceedings of the 2nd
India Software Engineering Conference (ISEC), pp
19-26, 2009.

> K. Pohl, G. Bockle and F. Van Der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-\Verlag New
York Inc, 2005.

> C. Weissman and S. Bobrowski. The Design
of the Force.com Multi-Tenant Internet Application
Development Platform. In SIGM OD, pp 889-896,
20009.

> D. Qi, A. Roychoudhury and Z. Liang. Test
Generation to Expose Changes in Evolving
Programs. In ASE, 2010.

> X. Ren, F. Shah, F. Tip, B. Ryder O.
Chesley. Chianti: A Tool for Change Impact Analysis
of Java Programs. In OOPSLA 2004, pp 432-448

> C. Treude, S. Berlik, S. Wenzeland U.
Kelter. Difference Computation of Large Models. In
ESEC/FSE 2007.

> T. Mens. A State-of-the-Art Survey on
Software Merging. IEEE Transactions on Software
Engineering, 28(5), 2002

> G. Brunet, M. Chechik, S. Esterbrook et al.
A Manifesto for Model Merging. In Proceedings of
GAMMA, May 2006

> M. Paloucci, T. Kawamura, T.R.Payne and
K. Sycara. Semantic Matching of Web Service
Capabilities. In Proceedings of IWSC, June 2002

> E. Stroulia and Y. Wang. Structural and
Semantic Matching for Assessing Web Service
Similarity. Int’1 Journal of Cooperative Information
Systems, 14(4), pp 407-438, 2005.

> Worldwide Software as a Service 2010-2014
Forecast: Software Will Never Be The Same. IDC
Report Doc#223628, June 2010.

> Forecast: Public Cloud Services, Worldwide
and Regions, Industry Sectors, 2009-2014. Gartner,
June 2010.

> J.M.Kaplan. How SaaS is Overcoming
Common Customer Objections. Cutter Consortium:
Sourcing and Vendor Relationships, Advisory
Service, Executive Update 8(9), 2008.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 1ssue 3, May - 2012

