
Engineering Multi-Tenant Software-as-a-Service Systems

E.Geetha Rani#1, CH.Suguna Latha*2, D.Anusha#3, M.Satya Sukumar*4 T.Swathi#5

#1Infornation Technology, Gudlavalleru Engineering College, Gudlavalleru, jntuk, A.P, INDIA

#3Information Technology.PVPSIT,Vijayawada, jntuk, A.P, INDIA

#5Information Technology.Gudlavalleru Engineering College, Gudlavalleru, jntuk, A.P, INDIA

*2Infornation Technology, Gudlavalleru Engineering College, Gudlavalleru, jntuk, A.P, INDIA

*4Infornation Technology,PPDCET,Surampalli(V),jntuk,A.P,INDIA

ABSTRACT
Increasingly, Software-as-a-Serv ice (SaaS) is

becoming a dominant mechanis m for the

consumption of software by end users. From a

vendor’s perspective, the benefits of SaaS arise from

leveraging economies of scale, by serving a large

number of customers (“tenants”) through a shared

instance of a centrally hosted software service.

Consequently, a SaaS provider would, in general, try

to drive commonality amongst the requirements of

different tenants, and at best, offer a fixed set of

customization options. However, many tenants would

also come with custom requirements, which may be a

pre-requisite for them to adopt the SaaS system.

These requirements should then be addressed by

evolving the SaaS system in a controlled manner,

while still supporting the needs of existing tenants.

This need to balance tenant variability and

commonality, and to optimize on development and

testing effort, can make the evolution of multi-tenant

SaaS systems an interesting engineering challenge;

this has strong economic undertones as well, given

the “pay-per-use” subscription model of SaaS, and

the cost of incremental development and maintenance

to cater to new tenant needs. In this paper, we outline

a set of research issues in the design, testing and

maintenance of multi-tenant SaaS systems, and

highlight some of the interesting optimizat ion

questions that arise in the process. Presenting specific

technical solutions is beyond the scope of this paper –

instead, our goal is to help shape a research agenda

for mult i-tenant SaaS that can provide stimulus for

further investigation into this area by the software

and service engineering research community, and can

help advance methodological guidance and tool

support for SaaS vendors.

Keywords :

Software-as-a-Serv ice, cloud computing, mult i-

tenancy, testing, semantics, refinement

1. INTRODUCTION
In recent years, the trend towards “Everything-as-a-

Service” (XaaS) as envisioned in Utility Computing’s

pay-per-use model, has been rapidly gaining ground

in the Informat ion and Communication Technology

(ICT) world. Companies are increasingly adopting

this new paradigm where they do not wish to commit

resources for engineering computing infra-structure.

Instead, they acquire these resources as and when

they need them as services. Cloud computing, which

has emerged as the run-time platform for realizing

this vision, may be visualized as a stack of possible

service types, ranging from infrastructure-as-a-

service (IaaS) at the very base, to platform-as-a-

service (PaaS)S, to finally, Software-as-a-Service or

SaaS – the main focus of this paper. Informally, SaaS

may be described as software deployed as a hosted

service and accessed over the internet without the

need for users to deploy and maintain additional on-

premise IT infrastructure. From a SaaS vendor’s

perspective, the benefits of SaaS arise from

leveraging economies of scale, by serving a large

number of customers (“multip le tenants”) through a

shared, centrally-hosted software service. This

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

1www.ijert.org

translates to lower subscription fees for individual

tenants, thereby encouraging entirely new market

segments to utilize the benefits of software services –

for example, Small and Medium Enterprises (SMEs)

who have traditionally been unable to afford steep

software license costs, are able to factor in SaaS

subscriptions as part of their operational expenses,

and thereby give their business the benefit of IT

services. For these reasons, SaaS has seen very

significant growth over the last few years, and the

market outlook for the future continues to be bright.

According to a recent IDC report [23], the SaaS

market reached $13.1B in revenue in 2009, while the

on-premise market shrunk by $7B. The SaaS market

is forecasted to reach $40.5B by 2014, representing a

compound annual growth rate (CAGR) of 25.3%. By

2014, about 34% of all new business software

purchases will be consumed via SaaS [23]. Other

industry analysts also share this optimis m around

Cloud Computing/SaaS e.g. Gartner estimates that

over the course of the next 5 years, enterprises will

cumulat ively spend $112B on SaaS, Paas and IaaS

[24]. The business benefits of SaaS notwithstanding,

supporting true mult i-tenancy in a SaaS system can

be very challenging. By true multi-tenancy, we mean

a SaaS instance that not only supports the common

needs of several tenants, but also the custom

requirements of indiv idual tenants to the extent

possible. In the traditional mode of on-premise

software delivery, or even in the Application Service

Provider (ASP) model, each tenant would have a

dedicated instance of the base application customized

to its needs. However, when several tenants have to

share the same application instance in a multi-tenant

SaaS, how to handle variat ions in tenant requirements

becomes an interesting question. Clearly, supporting

such variations increases the overhead on the SaaS

vendor. Also, allowing too much variability can

defeat the very purpose of sharing, and make system

maintenance very expensive. On the other hand,

allowing too little variab ility may d iscourage tenants

from subscribing to a SaaS in the first place - tenants

would be unwilling to compromise too much in terms

of changing their business processes to adapt to what

the SaaS vendor has to offer. This will be particularly

true for many small and medium-sized vendors, who

would be less capable to dictate the terms of business

engagement with their customers. In fact, industry

surveys [25] ind icate that the inability to customize

SaaS applications to suit their needs is the most

significant challenge that customers face with the

SaaS offerings they use. In the coming years, this has

the danger of slowing down the growth of SaaS

beyond those domains where there is little or no need

for tenant-specific variations. Such domains may be

few in spite of the general move towards industry

standards.We believe that for the SaaS paradigm to

truly meet its potential, vendors will need to move

away from build ing rigid “one-size-fits-all” systems,

or those that offer a fixed set of available

customization options from which tenants must

select. Instead, vendors will have to design SaaS

systems in a way that allows the applications to

evolve with time to cater to the custom requirements

of newer tenants looking to onboard the system.

While doing so, vendors should not, of course, lose

sight of the end-goal of a shared SaaS – that the

commonality amongst tenants remain sufficiently

high for a single application instance to be justifiable

and viable. Thus multi-tenant SaaS development

must involve maintaining this balance between tenant

commonality and variability on an ongoing basis,

leveraging the benefits of commonality wherever

possible, and suitably adapting the

design/development/testing/on-boarding process to

address the requirements of variability. At its very

core, SaaS is a economic model for software

consumption, hence much of these activities would

have to be grounded on the basis of financial

reasoning that can benefit the vendor as well as the

tenants. In this paper, we seek to outline a mult i-

tenant SaaS engineering approach that is motivated

by this line of thinking. In particular, we consider the

topics of: designing mult i-tenant SaaS systems in a

way that facilitates reasoning about tenant

commonality and variability (Section 4); testing such

systems efficiently to avoid redundancies due to

shared behaviour while still exercising all points of

difference (Section 5); and re-factoring SaaS systems

to ease maintenance (Section 6). Elaborating on these

issues, we naturally find a set of optimizat ion

questions rooted in the SaaS economic model, which

can guide decision-making – for example, which set

of tenants to onboard, or which subset of services to

retire, so that the vendor profitability is maximized,

or impact on tenants is minimized. The overall SaaS

engineering approach that we outline may be realized

through design and analysis toolkits that vendors may

use to methodically design, validate, refine and

evolve multi-tenant SaaS systems. However, going

into specific realizat ion aspects is beyond the scope

of this paper – we focus, instead, on the research

issues involved and outline possible solution

approaches with the hope that this will provide an

agenda for further investigation.

2. Related Work
While there is a lot of interest in SaaS in general, we

believe that the challenges that arise due to mult i-

tenancy have not been adequately explored from a

software engineering perspective. Much of the

existing research on multi-tenant SaaS have focused

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

2www.ijert.org

on shared data architecture and security management

[5, 7, 1, 15], and middleware extensions to address

the well-founded concerns due to

data/security/isolation. The work of [8] develops a

multi-tenant placement model which decides the best

server where a new tenant should be accommodated.

The placement main ly considers the hardware

resources including CPU and storage usage. In

principle, a new tenant will be placed on the server

with min imum remaining residual resource left that

meets the resource requirement of the new tenant.

There have also been studies on service performance

issues in multi-tenant SaaS [9].

In contrast, there has been relatively little research so

far on the impact tenant variability may have on the

functionality and evolution of a SaaS system over its

lifecycle. Th is is not surprising given that SaaS is a

relatively recent phenomenon, and hence the initial

focus is bound to be on issues that are related directly

to its feasibility (such as security or performance).

However, the fact that a SaaS system needs to

functionally cater to mult iple tenants is now

increasingly understood, leading to research on how

to model variability in a SaaS, and how to make a

SaaS system more customizable. Models and

techniques successfully employed in software

product line engineering [14] have been applied in

multi-tenant systems to manage configuration and

customization of service variants. In particular, [11]

extends variability modeling [2], which provides

informat ion for a tenant to customize the SaaS

application and guides the SaaS provider for service

deployment. The work of [3] discusses some

potential challenges in implementation and

maintenance of multi-tenant systems. It presents an

architectural approach which tries to separate the

multi-tenant configuration and underlying

implementation as much as possible, by adopting the

3-t ier architecture (authentication, configuration, and

database) in the traditional single-tenant web

application. Along the same lines, experiences in

modifying industrial-scale single-tenant software

systems to mult i-tenant software have been reported

in [4]. Th is involves extending user-authentication

mechanis ms, introducing tenant-specific software

configuration and adding an application layer to

extract tenant-specific views from the shared

database. A recent paper [13] also studies tenant

specific customizations in a single software instance,

multip le tenant setup.In the software product lines

community, feature diagrams have been used to

capture the similarit ies and differences between

products in a software product family (e.g. see [33]

and the references therein). Testing of s oftware

product lines described as feature diagrams has been

studied in [34], where the goal of test generation is

given as the presence/absence of selected features. In

comparison, for mult i-tenant SaaS systems, we feel it

is important to have a holistic view of the

commonality/differences across tenants so that it be

exploited to sharing of parts of the test suite across

tenants.

3.Motivation for this Paper
By and large, the emphasis of the above cited work

has been on how SaaS architects may model

customization/configuration options through

variation points, and make them available to tenants

who wish to on-board the SaaS system, so that each

tenant may indiv idually decide which set of

customization options offered by the vendor to select.

However, while a vendor may offer a fixed set of

customization options based on its understanding of

the domain, we expect that a SaaS – like all other

software in the past – will need to evolve based on

newer/differentiated capabilities demanded by the

users – specially since the user base, spanning across

multip le tenants, will be large and diverse. Business

imperatives will demand this evolution. One may

argue that tenant-specific changes (beyond vendor-

offered customizations) go against the very objective

of sharing, and that such demands, when they have to

be met, should be handled through separate

customized instances for individual tenants.

However, there is an entire spectrum to be traversed

between fully common, shared behavior, to

completely different, customized behavior, and we

strongly feel that the moot question is not whether

tenant-specific changes should be considered, but to

what extent they may be accommodated within a

single instance, while still retaining the benefits of

sharing. From the vendor’s perspective, the evolution

of a SaaS system due to functional variability

amongst tenants raises many interesting questions:

how different is a new service variant being

requested from the ones that we currently offer? Is it

a refinement, or an elaboration of what we have, or

will it require significant new development? What

impact will it have on the homogeneity of the overall

system if we accommodate it? Is the return-on-

investment justified? How quickly can we test the

changes? At what point does the maintenance

overhead of tenant-specific changes start outweighing

the benefits due to shared behavior? A service variant

we were supporting seems to be having diminishing

utility – how do we min imize the impact of retiring

it?....and many more. The goal of this paper is to

help chart an agenda from the existing work on

vendor-driven customizab ility via variability

modeling, to a more tenant-driven evolution of a

SaaS system, and the engineering challenges

(exemplified by the questions above) that the vendor

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

3www.ijert.org

has to address to accommodate this evolution. In the

rest of the paper, we attempt to elaborate on this

agenda.

4.Overview

To motivate the multi-tenant SaaS engineering

approach that we outline in subsequent sections, let

us consider the following scenario – two major stock

exchanges make an agreement to offer joint online

trading services for a range of stock transactions (this

is a realistic scenario as we have seen from recent

news on the Singapore and Australian Stock

Exchange [30]). Let us suppose, this has to be made

operational very soon to exp loit a favorable economic

climate.

 Several existing services offered by both the

stock exchanges have functional similarities, along

with some variat ions. These services need to be

identified and grouped together/merged in the joint

trading system to be developed.

 Requirements for several new business

services have been elicited with a h igh number of

variants to meet the needs of different financial

institutions and grades of investors. There is a need to

judiciously invest in new development, so that it

generates most value for the ecosystem (stock

exchange, customers), while g iving prio rity to the

services in most common need.

 As development commences, testing

scenarios seem to escalate when considering how

each possible tenant is likely to exercise the system.

Given the short development cycle, it is critical to

reduce testing overhead whenever possible, while

still retaining a degree of confidence about the

coverage of tenant behavior.

 Post development and testing, the joint

trading services are offered and they become very

successful. New tenants continue to come on-board

and the service and variant portfolio is

opportunistically expanded to cater to their needs. At

one point, maintenance overhead becomes a

bottleneck – somehow the system needs to be re-

factored to reduce tenant variability and keep things

tractable. These are all realistic scenarios that are

likely to occur when a multi-tenant SaaS system –

one that tries to maximize tenant commonality while

accepting some of their variabilit ies - is developed

and deployed. These scenarios suggest the following

topics would be relevant for engineering multi-tenant

SaaS:

 A (Semantic) Model for SaaS Systems: Th is

will involve modeling the SaaS services and

variations, and representing tenant requirements so

that they may be mapped to the SaaS system. The

model should support semantic reasoning, so that

similarities and differences between services and

tenant requirements may be analyzed to fine-tune the

service model, estimate development costs for tenant

requirements and guide tenant on-boarding.

 SaaS Testing: Tenants will share many

common features, but may also need capabilit ies that

apply only to a subset of other tenants. There is a

need to devise efficient test representation and test

case generation techniques, so that the testing activity

can focus on exercising variations in tenant behavior,

and avoid redundancies in testing the common

behavior shared across a set of tenants.

 Re-Factoring SaaS Systems: A multi-tenant

SaaS system may be initiated from customized single

tenant instances, whose commonalit ies need to be

merged and variation points accounted for. It will

continue to evolve as it accommodates the

requirements of new tenants on-boarding the system.

Eventually, it may again need to be re-factored –

certain service variants may not have a high utility

and the vendor may want to retire those while

minimally impacting subscribing tenants, while the

variability amongst certain sets of tenants may justify

separate SaaS instances for them. While the focus of

the above discussions has been on functional

similarities (or variabilities) between tenants and its

implications on the SaaS development cycle, there

may also be differences between non-functional

requirements (NFRs) of tenants. NFRs may be

captured in the Service Level Agreements (SLAs)

between the tenants and the SaaS provider, and they

will constitute an important element of a multi-tenant

SaaS analysis and engineering framework. However,

given the orthogonal nature of functional and non-

functional requirements and how they may be

realized, we restrict ourselves to the functional space

in this paper.
5.A Model for Multi-Tenant SaaS
A mult i-tenant SaaS system has to be carefully

designed to handle the variability that can arise due to

the differing needs of tenants. At an abstract level, a

SaaS system may be considered as a collection of

services, where each service in turn, consists of a

collection of operations that can be invoked by

clients. The functionality desired by different tenants

out of a service or operation may differ, thereby

necessitating support for variants of these entities. As

the existing literature shows [11], concepts from

product-line engineering may be adopted to define

variation points to which different variants may be

linked, and the variability model may also be used to

guide SaaS customization. Moreover, the packaging

and deployment of the SaaS may be guided through a

set of mult i-tenancy patterns that help distinguish

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

4www.ijert.org

between components that are shared between all

tenants or are specific to some tenants [12].

Technically, these constructs provide the basic

foundation for supporting variability within a mult i-

tenant SaaS application architecture. However, to

help mult i-tenant SaaS systems evolve in a controlled

manner, what is needed is not only a way to record

different variants, but also to be able to analyze their

degree of variab ility (or conversely, similarity). For

example, to onboard a new tenant, its requirements

from the SaaS system needs to be mapped onto the

set of available services and operations, so that the

vendor can determine the gaps that need to be filled

through new variants. If a new variant is very similar

to an existing service or operation, then the

development effort will be relatively s mall, and the

homogeneity of the system will not be impacted too

much. On the other hand, if the tenant requires a very

different/new type of service or operation, then it

may imply significant development overhead, which

has to be reviewed not only in light of the potential

financial benefits, but also the heterogeneity it

introduces and its long-term maintenance

implications. In addit ion to updating a SaaS system to

onboard a new tenant, the vendor may also wish to

re-factor the system periodically to improve its

maintainability (we d iscuss this in Section 6) – this

would also need an analysis of similarities between

different services/variants, so that the right decisions

may be taken with respect to changes that have to be

made to the underlying design.

For these reasons, it would be helpful to enrich the

existing variation-oriented modeling of multi-tenant

SaaS systems with constructs that enable

representation of service semantics. This may be

done, for example, using a Design by Contract

approach [31], where the semantics of a design entity

like a service or operation is captured through the use

of pre-conditions, effects/post-conditions, invariants

etc. In the SOA world, such a representation has

already been explored by the semantic web

community to facilitate service discovery, matching

or composition, leading to formalis ms like OWL-S

[32]. We believe that a similar approach can also be

taken to establish the semantic underpinnings of a

multi-tenant SaaS solution. On top of this, one may

define different notions of refinement to understand

relationships between services/variants and the ease

with which a new variant may be created from

existing ones. For example, a variant that only needs

weakening of an existing pre-condition may be easier

to incorporate than one that introduces a significant

new post-condition. Similarly, the addition of a

variant of an existing service operation may cause

less impact than the definition of a new operation,

which is turn, may be deemed to have less overhead

than having to define an entirely new service for a

tenant. Such an approach would help the vendor

estimate the cost of onboarding a new tenant, both in

terms of the associated development effort, as well as

the degree of heterogeneity that is introduces into the

model. The vendor may fu rther define thresholds for

this heterogeneity (or conversely, homogeneity or

commonality) at d ifferent design levels to control and

scope the evolution of a multi-tenant SaaS system.

Given such a semantic model for SaaS, the

onboarding of tenants poses interesting optimizat ion

problems. The requirements of a tenant may be

represented in terms of services and operations, and

we may expect these requirements to be a mix of

mandatory (must-have) and optional (good-to-have),

which provides a basis for negotiation with the SaaS

vendor. Given a tenant’s requirements profile, the

vendor would like to identify the optimal subset of

requirements it should support, so that its net profit is

maximized while lead ing to the best commonality in

the resultant system. The vendor’s profit would be

the difference between the expected revenue from the

services/operations based on the tenant’s anticipated

usage profile, and the cost of additional development,

which in turn will depend on the degree to which

existing services/operations may be re-used e.g.

through refinement. The resultant commonality of the

system would reflect the extent to which the

services/operations of the updated system are shared

between tenants, and the degree of similarity between

the variants of a service/operation. Given a set of

such tenants to be considered for the next cycle of

evolution of the SaaS system, the vendor would be

interested to identify the subset of tenants and

requirements to support, so that the above

profit/commonality criteria are optimized.A

variation-oriented semantic model for multi-tenant

SaaS can thus provide a sound basis for a controlled

evolution of the system.

6.Testing Multi-Tenant SaaS systems
There are (at least) two interesting questions to

consider in the area of testing multi-tenant SaaS

systems that evolve to accommodate tenant

variability : First, when a new tenant is onboarded,

how do we test that existing tenants are not impacted

by the changes introduced? Second, how do we

efficiently test that the SaaS system meets the needs

of the different tenants that have been onboarded? In

the approach outlined in the preceding section, any

new functional capability required by a tenant that is

being onboarded, is handled cleanly by defining a

new service/operation or its variant. We do not

update any existing operation used by current tenants.

This ensures that the changes made for the new

tenant are isolated, and do not impact the functioning

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

5www.ijert.org

of the existing tenants. The first question is thus not

relevant to our approach, although it will be a core

concern for methods that try to overload existing

operations to behave differently fo r different tenants.

We do not recommend this since it is likely to result

in code that is very difficult to maintain. The second

question, however, is very relevant. Given the large

degree of commonality that is likely to exist amongst

tenants, significant testing resources may be

consumed if every tenant has to be fully tested across

all applicab le scenarios. Rather, we may wish to test

only the changes introduced by a tenant. One may

argue, of course, that each tenant is different in that it

would have its own data set. However, even if tenants

are to be comprehensively tested individually, a

testing strategy should be devised that exploits

similarities amongst tenants to let testers step through

the scenarios in a systematic manner. Below, we

elaborate on the issues related to multi-tenant SaaS

testing, based on the semantic model suggested in the

preceding section. We assume a test case to be

represented as a sequence of service operation

invocations (or it may be relaxed into a partial order).

The first issue we consider is test case generation,

particularly test cases which do not exist in the

current test-suite, but which should be tested once the

new tenant(s) are on-boarded. This problem is similar

in flavor to the test-suite augmentation problem –

where tests are generated to stress program changes,

namely executing the changes and propagating the

effect of the changes to the program output. The

general problem of test-suite augmentation may be

addressed via two steps (for example, see [16]). In

the first step, a control dependency analysis is done

to find a test input to reach/execute the change. Then,

in the second step, we modify the path of the change

reaching test input to ensure that the program outputs

are different with or without the change. One key

issue here is to avoid infeasible paths, and for this

reason symbolic execution (and path condition

calculation) is essential. For multi-tenant SaaS

systems, the test-suite augmentation problem will be

visualized at a higher level, with the changes defined

at operation level. Consequently the individual steps

of the analysis (for finding the new tests) will also

need to be changed. For reaching the change, we may

want to explo it pre-conditions of the operations,

instead of performing a fine-grained control

dependency analysis. Finally, fo r propagating the

effect of the executed changes, we can analyze the

operation post-conditions (along with suitable control

flow restrict ions) to find a suitable test (in the form of

a partial order o f operation invocations). Since pre-

and post-condition analysis will be central to this

method, we envision that symbolic execution will

play an important role in the proposed methods. The

approach will extend contract-based testing of web

services [26, 27]. The second issue relevant to testing

multi-tenant SaaS systems is devising a testing

strategy that explo its the similarity amongst tenants

and structures the test suite accordingly. For this

purpose we propose the notion of a Test-tree. The

root node of a test-tree captures the set of test cases

which need to be tested for all the tenants. Each

intermediate node of the tree will capture a set of test

cases which need to be tested for a subset of tenants.

Thus, a partitioning of the tenant set is given by the

root-to-leaf paths in the test-tree. To further illustrate

the notion of test-tree, we may consider a schematic

example.

 Fig. 1: A Test Tree for Multi-Tenant SaaS

In this example, we have five tenants {t1, t2, t3, t4,

t5}. For comprehensive testing, tenant t1’s behavior

needs to be tested against (200 +100 +10) = 310 test

cases. Of these, 10 test cases are unique to t1, hence

the SaaS system must be tested on these prior to

onboarding of t1. Out of the remaining, 100 test cases

are shared with t2 and t3, and 200 test case are shared

with all other tenants, so depending on the degree to

which these test cases have already been exercised on

existing tenants, testers may decide whether to test

for a specific case or not. Furthermore, the root-to-

leaf paths in the test-tree induce a partitioning of the

tenant set – namely {{t1}, {t2, t3}, {t4, t5}}. We feel

that the notion of a test-tree is a powerful one, for

efficient and systematic testing of multi-tenant SaaS

systems. In a broad sense, constructing the test-tree

also amounts to a specification of the behavior of

tenants in a multi-tenant SaaS system – outlining the

similarities and differences across the tenants’ usage

of the SaaS system. Given such a notion of a test-tree

for a mult i-tenant SaaS system, we need to study how

the tree is modified as new tenants are on-boarded. In

this respect, we can be guided by some of the works

on software change-impact analysis. Mature tools

like Chianti [17] exist for change impact analysis.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

6www.ijert.org

Given two program versions, these tools identify the

atomic changes (across the two versions) and then

find out the tests whose execution is affected by the

changes. Such tools are very useful for program

understanding, debugging and testing – but from a

general software engineering context. For mult i-

tenant SaaS systems, the atomic changes can be

defined more coarsely, possibly in terms of new

operations or variants thereof. We can then adapt the

works on change impact analysis to find which tests

from the existing test suite may be affected, and test-

tree transformat ions have to be defined accordingly.

7. Re-Factoring Multi-Tenant SaaS Systems
There are situations where a vendor may wish to

refine a SaaS design, either to improve its

maintainability, o r to provide better support for

multi-tenancy. In particular, we envision the need for

three re-factoring techniques that we term merging,

splitting and pruning. The goal of merging is to help

bootstrap a multi-tenant SaaS design from existing

single-tenant ones. Splitting may be used to generate

smaller SaaS systems to reduce variability and

improve maintenance. Pruning may be used to retire

service entities that are of low utility, in a

controlled manner to manage impact. We introduce

them in the following.

Merging: The merging technique will be useful in

moving legacy service systems to the cloud. Imagine

a vendor of a SaaS system or an on-premise software

product with many instances that have been

individually customized and deployed for different

customers. The vendor may now want to offer this

software on the cloud, and have a single instance

shared across the customers, to leverage the benefits

of multi-tenancy. From a design perspective, this

means that the commonalities and differences across

the various customized instances need to be identified

and accounted for within a common design – this is

where merging comes in. The technique assumes that

the individual instances have a SOA-based design in

terms of services and operations, and that the

semantics of these entities (pre-conditions/effects) is

known, or may be discovered by mining the legacy

code. Given this, merging will analyze the

specification of the different instances to detect

similarities in services/operations. Different grades of

similarity (from strict to lenient notions) may be used

to come up with a merged design that meaningfully

groups together similar entities under variation

points. The literature on model differencing/merg ing

[17, 18, 19] and semantic web matching [20, 21] will

be relevant here.

Splitting: This is the dual of the merging operation.

There may be a number reasons why a service

provider may want to split a large mult i-tenant SaaS

system into smaller multi-tenant systems (each

system consisting of a subset of services and

operation variants present in the original system). For

example, it may be due to ease of maintenance. As

more and more tenants onboard a SaaS, the

service/operation/variant set may keep on increasing.

As a result, the software may get bloated, and a direct

business consequence of this for the provider would

be higher maintenance costs . Secondly, a group of

tenants may exh ibit similar usage requirements. In

such cases, it may make sense to support them out of

a separate (smaller) SaaS instance, and maybe charge

a higher price for those combinations of services and

operations. However, splitting a large multi-tenant

SaaS system into mult iple smaller ones supporting

subsets of tenants, may also lead to some features

being replicated across the different instances, and

this may lead to new running costs. There is thus a

trade-off to be considered. A relevant optimizat ion

problem is, given a mult i-tenant SaaS system S,

divide its tenant set T into K (>=2) non-overlapping

sub-sets generating K mult i-tenant systems (each

system containing all the services/operations/variants

needed by its tenants), in a way that leads to

maximization of the profit for the SaaS vendor and

also leads to the best commonality in the resulting

systems.

Pruning: Pruning refers to changes made to a SaaS

design by retiring entities (services, operations) that

the vendor perceives to be of low utility. This may be

based on financial mot ives. For example, the utility

value for a service operation (or a specific variant)

may be computed as the ratio of revenue generated

from this operation and its running costs – where the

revenue is computed over all tenants who have

subscribed to the operation, while running costs refer

to the cost the provider has to bear to maintain the

operation in question (such as cost of associated

infra-structure, third party services and so on). We

can similarly lift the notion of utility to the level of a

service by averaging over all the service operations.

When the utility of a service, operation or variant

falls below a threshold, the SaaS vendor may decide

to retire i.e. withdraw those entities, and thereby save

on the running costs. We term this as pruning the

SaaS design.

However, retiring a service or operation will impact

those tenants who have subscribed to it. If an entire

service is retired, the subscribing tenants will lose the

associated functionality, and if this represents one of

their mandatory requirements, they are likely to leave

the vendor, causing revenue loss to the latter. A more

controlled way of pruning the SaaS system may be by

retiring selected operation variants of low utility,

with the plan of offering other variants of these

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

7www.ijert.org

operations (as substitutes) to the subscribing tenants.

Our assumption here is that as long as the vendor is

able to preserve a tenant’s control flow through the

SaaS at the level of the operations invoked, it may

still be acceptable to the tenant if certain operation

variants are replaced by other suitable variants. Of

course, tenants will also need to know the cost

implications of this transfer – for example, if the new

variants are much more expensive than existing ones

- hence the vendor’s goal would be to offer those

alternative to a tenant that do not result in excessive

additional cost. On the other hand, if the provider

cannot preserve a tenant’s control flow in terms of

the operations it needs to invoke, then the tenant may

leave the provider. Given this context, the pruning

problem may be formulated in terms of determin ing

the subset Sk of low-utility operation variants that

may be removed from the SaaS system, such that the

number of tenants who may leave is <L, the average

transfer costs of remaining tenants is <Q, and the

provider’s profit is >P, where L, Q and P are suitable

thresholds for the respective measures that may be

defined by the user/vendor.

8.Summary
Multi-tenancy offers a very attractive proposition to

vendors and customers alike, to leverage the

economies of scale by sharing a common application

instance across many tenants. There is a growing

need however, to make mult i-tenant SaaS more

flexib le so that some of the custom requirements of

individual tenants can be met even within the shared

application instance. Existing approaches try to

address this by considering how a vendor may offer a

(fixed) set of customizat ion options to tenants, which

they can choose from while onboarding. In this

paper, we have argued for a more tenant-driven

evolution of a SaaS, where a vendor can

accommodate changes to a SaaS to meet tenant

needs, within reasonable limits. We have then

discussed a number of software engineering issues

that are relevant to such an evolution, and some of

the optimization problems that arise. Specifically, we

have considered semantic modeling of multi-tenant

SaaS systems, onboarding of tenants with custom

needs, efficient testing for multip le tenants with a

mix of common/custom behavior, and re-factoring

techniques to increase the maintainability and

economic value of multi-tenant SaaS systems. We are

currently working on formalizing many of the

concepts introduced in this paper. This will lay the

foundation for a mult i-tenant SaaS toolkit with

capability patterns for semantic modeling, tenant

onboarding, testing and re-factoring, that vendor

teams may use to develop, evolve and maintain

multi-tenant systems.

9. REFERENCES:
 S. Aulbach, T. Grust, D. Jacobs, A. Kemper

and J. Rittinger. Multi-tenant Databases for Software

as a Service:Schema- Mapping Techniques. In

SIGMOD, pp 1195-1206, 2008.

 J. Bayer, S. Gerard, O. Haugen et al.

Consolidated Product Line Variability Modeling.

Software Product Lines.

 C. Bezemer and A. Zaidman. Multi-Tenant

SaaS Applicat ions: Maintenance Dream or

Nightmare? In Proceedings of the 4th Internaitonal

Joint ERCIM/IWPSE Symposium on Software

Evolution (IWPSE-EVOL), 2010

 C. Bezemer, A. Zaidman, B. Platzbeecker et

al. Enabling Multi-tenancy: An Industrial Experience

Report. In ICSM.

 F. Chong, G. Carraro, and R. Wolter. Mult i-

Tenant Data Architecture. MSDN Library, Microsoft

Corporation, 2006.

 K. Czarnecki, M. Antkiewicz and C. Kim.

Multi-level Customizat ion in Application

Engineering. Communications of the ACM, 49(12):

65, 2006.

 C. Guo et al. A Framework for Nat ive

Multi-Tenancy Application Development and

Management. 9th IEEE Intl. Conf. on E-Commerce

Technology and 4th IEEE Intl. Conference on

Enterprise Computing, E-Commerce and E-Serv ices

(CEC-EEE), 2007.

 T. Kwok and A. Mohindra. Resource

Calculations with Constraints and Placement of

Tenants and Instances for Multi-Tenant SaaS

Applications. In International Conference on Service

Oriented Computing (ICSOC), 2008.

 X. Li, T. Liu, Y. Li and Y. Chen. SPIN:

Service Performance Isolation Infrastructure in

Multi-Tenancy Environment. In Internatonal

Conference on Serv ice-Oriented Computing

(ICSOC), pp 649-663, 2008.

 R. Mietzner and F. Leymann. Generat ion of

BPEL Customization Processes for SaaS applications

from Variability Descriptors. In IEEE International

Conference on Serv ices Computing, volume 2, pp

359-366, IEEE Computer Society, 2008.

 R. Mietzner, A. Metzger, F. Leymann and

K. Pohl. Variability Modeling to Support

Customization and Deployment on Multi-Tenant-

Aware Software as a Service Applications. In ICSE

Workshop on Princip les of Engineering Service

Oriented Systems (PESOS), 2009.

 R. Mietzner, F. Leymann and M. P.

Papazoglou. Defining Composite Configurable SaaS

Application Packages Using SCA, Variability

Descriptors and Multi-Tenancy Patterns. 3rd Intl.

Conference on Internet and Web Applications and

Services, pp 156-161, 2008.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

8www.ijert.org

 Nitu. Configurability in SaaS (software as a

service) Applications. In Proceedings of the 2nd

India Software Engineering Conference (ISEC), pp

19-26, 2009.

 K. Pohl, G. Bockle and F. Van Der Linden.

Software Product Line Engineering: Foundations,

Principles and Techniques. Springer-Verlag New

York Inc, 2005.

 C. Weissman and S. Bobrowski. The Design

of the Force.com Mult i-Tenant Internet Application

Development Platfo rm. In SIGMOD, pp 889-896,

2009.

 D. Qi, A. Roychoudhury and Z. Liang. Test

Generation to Expose Changes in Evolving

Programs. In ASE, 2010.

 X. Ren, F. Shah, F. Tip, B. Ryder O.

Chesley. Chianti: A Tool for Change Impact Analysis

of Java Programs. In OOPSLA 2004, pp 432-448

 C. Treude, S. Berlik, S. Wenzel and U.

Kelter. Difference Computation of Large Models. In

ESEC/FSE 2007.

 T. Mens. A State-of-the-Art Survey on

Software Merging. IEEE Transactions on Software

Engineering, 28(5), 2002

 G. Brunet, M. Chechik, S. Esterbrook et al.

A Manifesto for Model Merging. In Proceedings of

GAMMA, May 2006

 M. Paloucci, T. Kawamura, T.R.Payne and

K. Sycara. Semantic Matching of Web Serv ice

Capabilit ies. In Proceedings of IWSC, June 2002

 E. Stroulia and Y. Wang. Structural and

Semantic Matching for Assessing Web Service

Similarity. Int’l Journal of Cooperative Information

Systems, 14(4), pp 407-438, 2005.

 Worldwide Software as a Serv ice 2010-2014

Forecast: Software Will Never Be The Same. IDC

Report Doc#223628, June 2010.

 Forecast: Public Cloud Serv ices, Worldwide

and Regions, Industry Sectors, 2009-2014. Gartner,

June 2010.

 J.M.Kaplan. How SaaS is Overcoming

Common Customer Objections. Cutter Consortium:

Sourcing and Vendor Relationships, Advisory

Service, Executive Update 8(9), 2008.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

9www.ijert.org

